当前位置: 聚优范文网>儿童学堂>少儿数学>小升初数学知识点

小升初数学知识点

时间:2024-05-21 15:45:31 少儿数学 我要投稿

小升初数学知识点【精品15篇】

  在平平淡淡的学习中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在苦恼没有知识点总结吗?以下是小编帮大家整理的小升初数学知识点,仅供参考,欢迎大家阅读。

小升初数学知识点【精品15篇】

小升初数学知识点1

  一、等式、方程与代数

  1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  2.方程式:含有未知数的等式叫方程式。

  3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  4.代数: 代数就是用字母代替数。

  5.代数式:用字母表示的式子叫做代数式。

  如:3x =ab+c

  二、数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×时间=工作总量

  加数+加数=和

  一个加数=和 - 另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  三、表面积和体积

  1.三角形的面积=底×高÷2。 公式 S= a×h÷2

  2.正方形的面积=边长×边长 公式 S= a2

  3.长方形的面积=长×宽 公式 S= a×b

  4.平行四边形的.面积=底×高 公式 S= a×h

  5.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  6.内角和:三角形的内角和=180度。

  7.长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

  8.正方体的表面积=棱长×棱长×6 公式: S=6a2

  9.长方体的体积=长×宽×高 公式:V = abh

  10.长方体(或正方体)的体积=底面积×高 公式:V = abh

  11.正方体的体积=棱长×棱长×棱长 公式:V = a3

  12.圆的周长=直径×π 公式:L=πd=2πr

  13.圆的面积=半径×半径×π 公式:S=πr2

  14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  四、常用单位换算

  1.长度单位换算

  1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

  2.面积单位换算

  1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

  3.体(容)积单位换算

  1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升

  4.重量单位换算

  1吨=1000 千克 1千克=1000克 1千克=1公斤

  5.时间单位换算

  1世纪=100年 1年=12月

  大月(31天)有:18 月

  小月(30天)的有:49月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天

  1日=24小时 1时=60分 1分=60秒 1时=3600秒

  五、数学常用公式

  1.平均数: 总数÷总份数=平均数

  2.和差问题:(和+差)÷2=大数 (和-差)÷2=小数

  3.和倍问题:和÷(倍数-1)=小数

  小数×倍数=大数 (或者 和-小数=大数)

  4.差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

  5.相遇问题

  相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

  6.追及问题

  追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

  7.流水问题

  顺流速度=静水速度+水流速度

  逆流速度=静水速度-水流速度

  8.浓度问题

  溶质的重量+溶剂的重量=溶液的重量

  溶质的重量÷溶液的重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

  9.利润与折扣问题

  利润=售出价-成本

  利润率=利润÷成本×100%=(售出价÷成本-1)×100%

  涨跌金额=本金×涨跌百分比

  利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-20%)

  10、盈亏问题

  (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配 的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

  1.圆周率常取数据

  3.14×1=3.14

  3.14×2=6.28

  3.14×3=9.42

  3.14×4=12.56

  3.14×5=15.7

  3.15×6=18.84

  3.14×7=21.98

  3.14×8=25.12

  3.14×9=28.26

  2.常用特殊数的乘积

  25×3=75

  25×4=100

  25×8=200

  125×3=375

  125×4=500

  125×8=1000

  625×16=10000

  37×3=111

  3.常用平方数

  112=121 122=144 132=169 142=196

  152=225 162=256 172=289 182=324

  192=361 102=100 202=400 302=900

  402=1600 502=2500 602=3600 7702=4900

  802=6400 152=225 252=625 352=1225

  452=20xx 552=3025 652=4225 752=5625

  852=7225

  4.关于常用分数与小数的互化

  1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4

  3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625

  7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35

  9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08

  3/25=0.12 4/25=0.16 6/25=0.24

  5.常用立方数

  13=1 23=8 33=27 43=64 53=125

  63=216 73=343 83=512 93=729

小升初数学知识点2

  1 分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位1的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3 分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

  已知一个数的几分之几(或百分之几 ) ,求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位1的量。

  解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

  数量。

  4 出勤率

  发芽率=发芽种子数/试验种子数100%

  小麦的出粉率= 面粉的重量/小麦的重量100%

  产品的合格率=合格的产品数/产品总数100%

  职工的出勤率=实际出勤人数/应出勤人数100%

  5 工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系式:

  工作总量=工作效率工作时间

  工作效率=工作总量工作时间

  工作时间=工作总量工作效率

  工作总量工作效率和=合作时间

  6 纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额 )的比率叫做税率。

  * 利息

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  利息=本金利率时间

  --

  第二章 度量衡

  一 长度

  (一) 什么是长度

  长度是一维空间的度量。

  (二) 长度常用单位

  * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)

  (三) 单位之间的换算

  * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米

  二 面积

  (一)什么是面积

  面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。

  (二)常用的面积单位

  * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米

  (三)面积单位的换算

  * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米

  * 1公倾 =10000 平方米 * 1平方公里 =100 公顷

  三 体积和容积

  (一)什么是体积、容积

  体积,就是物体所占空间的大小。

  容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

  (二)常用单位

  1 体积单位

  * 立方米 * 立方分米 * 立方厘米

  2 容积单位 * 升 * 毫升

  (三)单位换算

  1 体积单位

  * 1立方米=1000立方分米

  * 1立方分米=1000立方厘米

  2 容积单位

  * 1升=1000毫升

  * 1升=1立方米

  * 1毫升=1立方厘米

  四 质量

  (一)什么是质量

  质量,就是表示表示物体有多重。

  (二)常用单位

  * 吨 t * 千克 kg * 克 g

  (三)常用换算

  * 一吨=1000千克

  * 1千克=1000克

  五 时间

  (一)什么是时间

  是指有起点和终点的一段时间

  (二)常用单位

  世纪、 年 、 月 、 日 、 时 、 分、 秒

  (三)单位换算

  * 1世纪=100年

  * 1年=365天 平年

  * 一年=366天 闰年

  * 一、三、五、七、八、十、十二是大月 大月有31 天

  * 四、六、九、十一是小月小月 小月有30天

  * 平年2月有28天 闰年2月有29天

  * 1天= 24小时

  * 1小时=60分

  * 一分=60秒

  六 货币

  (一)什么是货币

  货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

  (二)常用单位

  * 元 * 角 * 分

  (三)单位换算

  * 1元=10角

  * 1角=10分

  -

  第三章 代数初步知识

  一、用字母表示数

  1 用字母表示数的意义和作用

  * 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

  2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

  (1)常见的数量关系

  路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

  s=vt

  v=s/t

  t=s/v

  总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

  a=bc

  b=a/c

  c=a/b

  (2)运算定律和性质

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  减法的性质:a-(b+c) =a-b-c

  (3)用字母表示几何形体的公式

  长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

  c=2(a+b)

  s=ab

  正方形的边长a用表示,周长用c表示,面积用s表示。

  c=4a

  s=a

  平行四边形的底a用表示,高用h表示,面积用s表示。

  s=ah

  三角形的底用a表示,高用h表示,面积用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

  s=(a+b)h/2

  s=mh

  圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

  c=d=2r

  s= r

  扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

  s= nr/360

  长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

  v=sh

  s=2(ab+ah+bh)

  v=abh

  正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示.

  s=6a

  v=a

  圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示.

  s侧=ch

  s表=s侧+2s底

  v=sh

  圆锥的高用h表示,底面积用s表示, 体积用v表示.

  v=sh/3

  3 用字母表示数的写法

  数字和字母、字母和字母相乘时,乘号可以记作.,或者省略不写,数字要写在字母的前面。

  当1与任何字母相乘时,1省略不写。

  在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

  用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

  4将数值代入式子求值

  * 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

  * 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

  二、简易方程

  (一)方程和方程的解

  1方程:含有未知数的等式叫做方程。

  注意方程是等式,又含有未知数,两者缺一不可。

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

  2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

  三、解方程

  解方程,求方程的解的过程叫做解方程。

  四、列方程解应用题

  1 列方程解应用题的意义

  * 用方程式去解答应用题求得应用题的未知量的方法。

  2 列方程解答应用题的步骤

  * 弄清题意,确定未知数并用x表示;

  * 找出题中的数量之间的相等关系;

  * 列方程,解方程;

  * 检查或验算,写出答案。

  3列方程解应用题的方法

  * 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

  * 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的.一种思维过程,其思考方向是从未知到已知。

  4列方程解应用题的范围

  小学范围内常用方程解的应用题:

  a一般应用题;

  b和倍、差倍问题;

  c几何形体的周长、面积、体积计算;

  d 分数、百分数应用题;

  e 比和比例应用题。

  五 比和比例

  1比的意义和性质

  (1) 比的意义

  两个数相除又叫做两个数的比。

  :是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  比的后项不能是零。

  根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  (2)比的性质

  比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  (3) 求比值和化简比

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  (4)比例尺

  图上距离:实际距离=比例尺

  要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

  线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

  (5)按比例分配

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  2 比例的意义和性质

  (1) 比例的意义

  表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  (2)比例的性质

  在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

  (3)解比例

  根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  3 正比例和反比例

  (1) 成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示y/x=k(一定)

  (2)成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示xy=k(一定)

小升初数学知识点3

  (一)商不变的规律

  商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

  (二)小数的性质

  小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

  (三)小数点位置的移动引起小数大小的变化

  1。 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的'数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍

  2。 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍

  3。 小数点向左移或者向右移位数不够时,要用0补足位。

  (四)分数的基本性质

  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

  (五)分数与除法的关系

  1。 被除数除数= 被除数/除数

  2。 因为零不能作除数,所以分数的分母不能为零。

  3。 被除数 相当于分子,除数相当于分母。

小升初数学知识点4

  和差问题的公式

  (和+差)÷2=大数

  (和-差)÷2=小数

  和倍问题

  和÷(倍数-1)=小数

  小数×倍数=大数

  (或者和-小数=大数)

  差倍问题

  差÷(倍数-1)=小数

  小数×倍数=大数

  (或小数+差=大数)

  植树问题

  1非封闭线路上的植树问题主要可分为以下三种情形:

  ⑴如果在非封闭线路的'两端都要植树,那么:

  株数=段数+1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  ⑶如果在非封闭线路的两端都不要植树,那么:

  株数=段数-1=全长÷株距-1

  全长=株距×(株数+1)

  株距=全长÷(株数+1)

  2封闭线路上的植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

小升初数学知识点5

  1、 整数的意义 自然数和0都是整数。

  2 、自然数

  我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。

  一个物体也没有,用0表示。0也是自然数。

  3、计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。

  每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4 、数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5、数的整除

  整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。

  如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是相互依存的。

  一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

  个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

  个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

  一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

  能被2整除的数叫做偶数,不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

  一个数,如果只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  1

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7

  几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的`最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

  当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

  如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ??

  3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

小升初数学知识点6

  (一)小数

  1、小数的意义

  把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位十分之一和整数部分的最低单位一之间的进率也是10。

  2、小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。

  带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。

  有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.333.1415926

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:

  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是9,0.5454的循环节是54。

  纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.1110.5656

  混循环小数:循环节不是从小数部分第一位开始的',叫做混循环小数。3.12220.03333

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。

  (二)分数

  1、分数的意义

  把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

  2、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  3、约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (三)百分数

  表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。

  以上就是小编为大家整理的小升初数学知识点:小数、百分数、分数。

小升初数学知识点7

  综合行程知识点:

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水 速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  经典例题:

  1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  解:

  根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

  根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

  可以得出马与羊的速度比是21x:20x=21:20

  根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的.份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

  2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

  答案720千米。

  由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

  3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。

  解:

  600÷12=50,表示哥哥、弟弟的速度差

  600÷4=150,表示哥哥、弟弟的速度和

  (50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

  (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

  600÷100=6分钟,表示跑的快者用的时间

  600/50=12分钟,表示跑得慢者用的时间

  4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  答案为53秒

  算式是(140+125)÷(22-17)=53秒

  可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

  5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

  答案为100米

  300÷(5-4.4)=500秒,表示追及时间

  5×500=2500米,表示甲追到乙时所行的路程

  2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

小升初数学知识点8

  一、线、角

  1.直线没有端点,没有长度,可以无限延伸。

  2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。

  3.在一条直线上的一个点可以引出两条射线。

  4.线段有两个端点,可以测量长度。圆的半径、直径都是线段。

  5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

  6.几个易错的角边关系:

  (1)平角的两边是射线,平角不是直线。

  (2)三角形、四边形中的角的两边是线段。

  (3)圆心角的两边是线段。

  7.两条直线相交成直角时,这两条直线叫做互相垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  8.从直线外一点到这条直线所画的垂直线段的'长度叫做点到直线的距离。

  9.在同一个平面上不相交的两条直线叫做平行线。

  二、三角形

  1.任何三角形内角和都是180度。

  2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

  3.任何三角形都有三条高。

  4.直角三角形两个锐角的和是90度。

  5.两个三角形等底等高,则它们面积相等。

  6.面积相等的两个三角形,形状不一定相同。

  三、正方形面积

  1.正方形面积:边长边长

  2.正方形面积:两条对角线长度的积2

  四、三角形、四边形的关系

  1.两个完全一样的三角形能组成一个平行四边形。

  2.两个完全一样的直角三角形能组成一个长方形。

  3.两个完全一样的等腰直角三角形能组成一个正方形。

  4.两个完全一样的梯形能组成一个平行四边形。

  五、圆

  1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r2。

  2.一个环形,外圆的半径是R,内圆的半径是r,它的面积是

  3.半圆的周长等于圆的周长的一半加直径。

  六、半圆的周长公式:C=d?2+d或C=pr+2r

  4.半圆面积=圆的面积/2

  5.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  七、圆柱、圆锥

  1.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

  2.如果把圆柱的侧面展开,得到一个正方形,那么圆柱的底面周长和高相等。

  3.把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,表面积增加了两个面,增加的面积是rh2。

  4.把一个圆柱沿着底面直径劈开,得到两个半圆柱体,表面积和比原来增加了两个长方形的面,增加的面积和是dh2。

  5.把一个圆柱加工成一个最大的圆锥,那么圆柱与圆锥等底等高,削去的圆柱的体积占圆柱体积的,削去的圆柱的体积占圆锥体积的2倍。

  6.把一个圆柱截成几段,增加的表面积是底面圆,增加的面的个数是:截的次数2。

小升初数学知识点9

  一 统计表

  (一)意义

  * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

  (二)组成部分

  * 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

  (三)种类

  * 单式统计表:只含有一个项目的统计表。

  * 复式统计表:含有两个或两个以上统计项目的统计表。

  * 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

  (四)制作步骤

  1搜集数据

  2整理数据:

  要根据制表的目的和统计的.内容,对数据进行分类。

  3设计草表:

  要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

  4 正式制表:

  把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

  小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的小升初数学简单的统计知识点能让大家在小升初的备考过程助大家一臂之力!

小升初数学知识点10

  基本公式:

  ①工作总量=工作效率×工作时间

  ②工作效率=工作总量÷工作时间

  ③工作时间=工作总量÷工作效率

  基本思路:

  ①假设工作总量为“1”(和总工作量无关);

  ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间。

  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

  经验简评:合久必分,分久必合。

  本文导航 1、首页2、工程问题练习题及解析 二、工程问题练习题及解析

  1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

  解:1/20+1/16=9/80表示甲乙的工作效率

  9/80×5=45/80表示5小时后进水量

  1-45/80=35/80表示还要的进水量

  35/80÷(9/80-1/10)=35表示还要35小时注满

  答:5小时后还要35小时就能将水池注满。

  2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的'工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

  解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

  又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

  设合作时间为x天,则甲独做时间为(16-x)天

  1/20*(16-x)+7/100*x=1

  x=10

  答:甲乙最短合作10天

  3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

  解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

  (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

  根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

  所以1-9/10=1/10表示乙做6-4=2小时的工作量。

  1/10÷2=1/20表示乙的工作效率。

  1÷1/20=20小时表示乙单独完成需要20小时。

  答:乙单独完成需要20小时。

小升初数学知识点11

  基本概念与性质:

  分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位“1”平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的'差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  经典例题:

  例、某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为6:5。(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%。(3)甲、乙两校获二等奖的人数之比为5:6。

  问甲校获二等奖的人数占该校获奖总人数的百分数是几?

  解析:

  根据条件(2)和(3):二等奖总人数为11份,那么一等奖总人数为11×2÷3=22/3;转化为整数比,二等奖与一等奖人数比为33:22;甲、乙两校二等奖人数比为5:6=15:18,甲、乙两校获奖人数比为6:5=30:25。所以,甲校获二等奖的人数占该校获奖总人数的:15÷30=50%

  另一种算法:

  获奖总人数6+5=11份,二等奖人数11×60%=6.6份,甲校二等奖人数6.6×5/11=3份

  所以,甲校二等奖人数占该校获奖总人数的3÷6=50%

小升初数学知识点12

  1、 半圆的周长和圆的周长的一半有区别。

  2、 0.52÷0.17商是3,余数不是1而是0.01

  3、 在求总人数、总只数、总棵数这类应用题时,结果不可能是分数和小数。

  4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  5、 无盖的水桶,水池,金鱼缸,水槽等,求表面积时一定要减少一个底面积。

  6、 求大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。

  7、 求××率或百分之几的列式中,最后必须“×100﹪”。

  8、 大数的读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  9、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  10、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多孩子直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的4000000面积单位。

  11、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  12、比的.问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  13、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  14、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  15、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多孩子没有看到kg与g的单位不一致,直接给出了75的错误答案。(马上点标题下“小升初”关注可获得更多有态度的智慧文章,每天更新哟!)

  16、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  17、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  18、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运

  算、运算顺序以及提取公因数等计算基本功的考察。

  19、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为a米,则平均速度为:(a×2)÷(a÷1+a÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

小升初数学知识点13

  1、循环小数的计算

  两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。

  从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。

  2、分数一元一次方程的求解

  其实很简单,只要孩子能够把过程规范好!

  1.去分母(同乘分母的最小公倍数)

  2.去括号(运用乘法分配律,注意减号后面的括号去掉时要变号!!30%以上的孩子至今未解决这个问题!!!)

  3.移项并合并同类项,保证字母在一边,数字在另一边。(注意不要跳步,以免孩子粗心出错。)

  4.化系数为1,求出解来。(记得解一定把x写作左边,得数写在右边)

  3、乘法分配律和提取公因数

  知识点都会,就是易错。

  要想提好公因数,一定要学会动笔前先观察算式,以下是考察提取公因数的常用方式:

  1.最简单的障眼法是把一个数写成不同的形式,比如可以写成小数、假分数、带分数、百分数,从而隐藏了公因数,这就需要我们熟练这些形式之间的互化,还有一颗火眼金睛;

  2.利用积不变的方式发掘公因数,比如某个数乘以37加上某个数乘以74,看似没有公因数,但是74等于2乘以37,因此某个数乘以74可以变成这个数的2倍再乘以37,从而出现了37这个公因数;

  3.最隐蔽的一种,就是乘除互化,乘以1.2和除以5/6本质上其实是一样的`,通过把除法化为乘法后即可出现公因数,因此拿到一个类似的问题,先把每一项都转化为乘法,再去寻找公因数会比较高效。

  4、连锁约分和整体约分

  约分是分数乘除法特有的巧算技巧点。能够把很多复杂不好计算的部分通过约分约去,从而达到简化计算的目的。要理解透这两种约分,只需把它们的起源找到就很简单了。

  5、换元

  换元体现了“整体打包”这种经典的数学思想。这种用抽象的未知数来代表一个复杂的数或算式的思维方式对习惯了具体数的四则运算的小学生来说还是很有挑战的。

  6、裂项

  总的来讲,它的难度很高。不过由于大多数小升初裂项题都很简单,因此有的孩子会选择图方便去死记住规律。这样其实非常危险,第一,现在雅系的小升初考试裂项难度远超普通题,只会做最简单的裂项是远远不够的;第二,公式中有一些细节容易被记错,如果没有理解的辅助,在真实考试的紧张状态下很容易出错。

小升初数学知识点14

  一、数学基础知识整理(一到六年级)

  一年级九九乘法口诀表。学会基础加减乘。

  二年级完善乘法口诀表,学会除混合运算,基础几何图形。

  三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

  四年级线角自然数整数,素因数梯形对称,分数小数计算。

  五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

  六年级比例百分比概率,圆扇圆柱及圆锥。

  二、必背定义、定理公式

  三角形的面积=底×高÷2。 公式 S= a×h÷2

  正方形的面积=边长×边长 公式 S= a×a

  长方形的面积=长×宽 公式 S= a×b

  平行四边形的面积=底×高 公式 S= a×h

  点击下载:数学基础知识整理

  梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的体积=长×宽×高 公式:V=abh

  长方体(或正方体)的体积=底面积×高 公式:V=abh

  正方体的体积=棱长×棱长×棱长 公式:V=aaa

  圆的周长=直径×π 公式:L=πd=2πr

  圆的面积=半径×半径×π 公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的`表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

小升初数学知识点15

  一、数学知识点:分数应用题

  1、知识点概述

  分数应用题是研究数量之间份数关系的典型应用题,包括三种类型:求一个数是另一个数的几分之几;求一个数的几分之几是多少;已知一个数的几分之几是多少,求这个数。

  分数应用题一方面是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的.关键.

  2、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

  3、怎样找准分数应用题中单位“1”

  (1)部分数和总数

  在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

  例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

  解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

  (2)两种数量比较

  分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

  例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),

  解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

《小升初数学知识点【精品15篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【小升初数学知识点】相关文章:

小升初的数学知识点04-11

小升初数学重要知识点04-04

小升初数学必考知识点03-29

小升初数学知识点05-20

【经典】小升初数学知识点05-21

小升初数学知识点总结03-05

小升初数学知识点(优秀)05-21

小升初的数学知识点总结归纳04-11

(实用)小升初数学知识点总结03-10

小升初数学知识点总结【热】05-03

小升初数学知识点【精品15篇】

  在平平淡淡的学习中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在苦恼没有知识点总结吗?以下是小编帮大家整理的小升初数学知识点,仅供参考,欢迎大家阅读。

小升初数学知识点【精品15篇】

小升初数学知识点1

  一、等式、方程与代数

  1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  2.方程式:含有未知数的等式叫方程式。

  3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  4.代数: 代数就是用字母代替数。

  5.代数式:用字母表示的式子叫做代数式。

  如:3x =ab+c

  二、数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×时间=工作总量

  加数+加数=和

  一个加数=和 - 另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  三、表面积和体积

  1.三角形的面积=底×高÷2。 公式 S= a×h÷2

  2.正方形的面积=边长×边长 公式 S= a2

  3.长方形的面积=长×宽 公式 S= a×b

  4.平行四边形的.面积=底×高 公式 S= a×h

  5.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  6.内角和:三角形的内角和=180度。

  7.长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

  8.正方体的表面积=棱长×棱长×6 公式: S=6a2

  9.长方体的体积=长×宽×高 公式:V = abh

  10.长方体(或正方体)的体积=底面积×高 公式:V = abh

  11.正方体的体积=棱长×棱长×棱长 公式:V = a3

  12.圆的周长=直径×π 公式:L=πd=2πr

  13.圆的面积=半径×半径×π 公式:S=πr2

  14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  四、常用单位换算

  1.长度单位换算

  1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

  2.面积单位换算

  1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

  3.体(容)积单位换算

  1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升

  4.重量单位换算

  1吨=1000 千克 1千克=1000克 1千克=1公斤

  5.时间单位换算

  1世纪=100年 1年=12月

  大月(31天)有:18 月

  小月(30天)的有:49月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天

  1日=24小时 1时=60分 1分=60秒 1时=3600秒

  五、数学常用公式

  1.平均数: 总数÷总份数=平均数

  2.和差问题:(和+差)÷2=大数 (和-差)÷2=小数

  3.和倍问题:和÷(倍数-1)=小数

  小数×倍数=大数 (或者 和-小数=大数)

  4.差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

  5.相遇问题

  相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

  6.追及问题

  追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

  7.流水问题

  顺流速度=静水速度+水流速度

  逆流速度=静水速度-水流速度

  8.浓度问题

  溶质的重量+溶剂的重量=溶液的重量

  溶质的重量÷溶液的重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

  9.利润与折扣问题

  利润=售出价-成本

  利润率=利润÷成本×100%=(售出价÷成本-1)×100%

  涨跌金额=本金×涨跌百分比

  利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-20%)

  10、盈亏问题

  (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配 的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

  1.圆周率常取数据

  3.14×1=3.14

  3.14×2=6.28

  3.14×3=9.42

  3.14×4=12.56

  3.14×5=15.7

  3.15×6=18.84

  3.14×7=21.98

  3.14×8=25.12

  3.14×9=28.26

  2.常用特殊数的乘积

  25×3=75

  25×4=100

  25×8=200

  125×3=375

  125×4=500

  125×8=1000

  625×16=10000

  37×3=111

  3.常用平方数

  112=121 122=144 132=169 142=196

  152=225 162=256 172=289 182=324

  192=361 102=100 202=400 302=900

  402=1600 502=2500 602=3600 7702=4900

  802=6400 152=225 252=625 352=1225

  452=20xx 552=3025 652=4225 752=5625

  852=7225

  4.关于常用分数与小数的互化

  1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4

  3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625

  7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35

  9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08

  3/25=0.12 4/25=0.16 6/25=0.24

  5.常用立方数

  13=1 23=8 33=27 43=64 53=125

  63=216 73=343 83=512 93=729

小升初数学知识点2

  1 分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位1的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3 分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

  已知一个数的几分之几(或百分之几 ) ,求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位1的量。

  解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

  数量。

  4 出勤率

  发芽率=发芽种子数/试验种子数100%

  小麦的出粉率= 面粉的重量/小麦的重量100%

  产品的合格率=合格的产品数/产品总数100%

  职工的出勤率=实际出勤人数/应出勤人数100%

  5 工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系式:

  工作总量=工作效率工作时间

  工作效率=工作总量工作时间

  工作时间=工作总量工作效率

  工作总量工作效率和=合作时间

  6 纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额 )的比率叫做税率。

  * 利息

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  利息=本金利率时间

  --

  第二章 度量衡

  一 长度

  (一) 什么是长度

  长度是一维空间的度量。

  (二) 长度常用单位

  * 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)

  (三) 单位之间的换算

  * 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 * 1米 =1000 毫米 * 1千米 =1000 米

  二 面积

  (一)什么是面积

  面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。

  (二)常用的面积单位

  * 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米

  (三)面积单位的换算

  * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米

  * 1公倾 =10000 平方米 * 1平方公里 =100 公顷

  三 体积和容积

  (一)什么是体积、容积

  体积,就是物体所占空间的大小。

  容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

  (二)常用单位

  1 体积单位

  * 立方米 * 立方分米 * 立方厘米

  2 容积单位 * 升 * 毫升

  (三)单位换算

  1 体积单位

  * 1立方米=1000立方分米

  * 1立方分米=1000立方厘米

  2 容积单位

  * 1升=1000毫升

  * 1升=1立方米

  * 1毫升=1立方厘米

  四 质量

  (一)什么是质量

  质量,就是表示表示物体有多重。

  (二)常用单位

  * 吨 t * 千克 kg * 克 g

  (三)常用换算

  * 一吨=1000千克

  * 1千克=1000克

  五 时间

  (一)什么是时间

  是指有起点和终点的一段时间

  (二)常用单位

  世纪、 年 、 月 、 日 、 时 、 分、 秒

  (三)单位换算

  * 1世纪=100年

  * 1年=365天 平年

  * 一年=366天 闰年

  * 一、三、五、七、八、十、十二是大月 大月有31 天

  * 四、六、九、十一是小月小月 小月有30天

  * 平年2月有28天 闰年2月有29天

  * 1天= 24小时

  * 1小时=60分

  * 一分=60秒

  六 货币

  (一)什么是货币

  货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

  (二)常用单位

  * 元 * 角 * 分

  (三)单位换算

  * 1元=10角

  * 1角=10分

  -

  第三章 代数初步知识

  一、用字母表示数

  1 用字母表示数的意义和作用

  * 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

  2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

  (1)常见的数量关系

  路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

  s=vt

  v=s/t

  t=s/v

  总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

  a=bc

  b=a/c

  c=a/b

  (2)运算定律和性质

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  减法的性质:a-(b+c) =a-b-c

  (3)用字母表示几何形体的公式

  长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

  c=2(a+b)

  s=ab

  正方形的边长a用表示,周长用c表示,面积用s表示。

  c=4a

  s=a

  平行四边形的底a用表示,高用h表示,面积用s表示。

  s=ah

  三角形的底用a表示,高用h表示,面积用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

  s=(a+b)h/2

  s=mh

  圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

  c=d=2r

  s= r

  扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

  s= nr/360

  长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

  v=sh

  s=2(ab+ah+bh)

  v=abh

  正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示.

  s=6a

  v=a

  圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示.

  s侧=ch

  s表=s侧+2s底

  v=sh

  圆锥的高用h表示,底面积用s表示, 体积用v表示.

  v=sh/3

  3 用字母表示数的写法

  数字和字母、字母和字母相乘时,乘号可以记作.,或者省略不写,数字要写在字母的前面。

  当1与任何字母相乘时,1省略不写。

  在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

  用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

  4将数值代入式子求值

  * 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

  * 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

  二、简易方程

  (一)方程和方程的解

  1方程:含有未知数的等式叫做方程。

  注意方程是等式,又含有未知数,两者缺一不可。

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

  2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

  三、解方程

  解方程,求方程的解的过程叫做解方程。

  四、列方程解应用题

  1 列方程解应用题的意义

  * 用方程式去解答应用题求得应用题的未知量的方法。

  2 列方程解答应用题的步骤

  * 弄清题意,确定未知数并用x表示;

  * 找出题中的数量之间的相等关系;

  * 列方程,解方程;

  * 检查或验算,写出答案。

  3列方程解应用题的方法

  * 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

  * 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的.一种思维过程,其思考方向是从未知到已知。

  4列方程解应用题的范围

  小学范围内常用方程解的应用题:

  a一般应用题;

  b和倍、差倍问题;

  c几何形体的周长、面积、体积计算;

  d 分数、百分数应用题;

  e 比和比例应用题。

  五 比和比例

  1比的意义和性质

  (1) 比的意义

  两个数相除又叫做两个数的比。

  :是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  比的后项不能是零。

  根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  (2)比的性质

  比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  (3) 求比值和化简比

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  (4)比例尺

  图上距离:实际距离=比例尺

  要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

  线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

  (5)按比例分配

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  2 比例的意义和性质

  (1) 比例的意义

  表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  (2)比例的性质

  在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

  (3)解比例

  根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  3 正比例和反比例

  (1) 成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示y/x=k(一定)

  (2)成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示xy=k(一定)

小升初数学知识点3

  (一)商不变的规律

  商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

  (二)小数的性质

  小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

  (三)小数点位置的移动引起小数大小的变化

  1。 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的'数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍

  2。 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍

  3。 小数点向左移或者向右移位数不够时,要用0补足位。

  (四)分数的基本性质

  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

  (五)分数与除法的关系

  1。 被除数除数= 被除数/除数

  2。 因为零不能作除数,所以分数的分母不能为零。

  3。 被除数 相当于分子,除数相当于分母。

小升初数学知识点4

  和差问题的公式

  (和+差)÷2=大数

  (和-差)÷2=小数

  和倍问题

  和÷(倍数-1)=小数

  小数×倍数=大数

  (或者和-小数=大数)

  差倍问题

  差÷(倍数-1)=小数

  小数×倍数=大数

  (或小数+差=大数)

  植树问题

  1非封闭线路上的植树问题主要可分为以下三种情形:

  ⑴如果在非封闭线路的'两端都要植树,那么:

  株数=段数+1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  ⑶如果在非封闭线路的两端都不要植树,那么:

  株数=段数-1=全长÷株距-1

  全长=株距×(株数+1)

  株距=全长÷(株数+1)

  2封闭线路上的植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

小升初数学知识点5

  1、 整数的意义 自然数和0都是整数。

  2 、自然数

  我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。

  一个物体也没有,用0表示。0也是自然数。

  3、计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。

  每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4 、数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5、数的整除

  整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。

  如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是相互依存的。

  一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

  个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

  个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

  一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

  能被2整除的数叫做偶数,不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

  一个数,如果只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  1

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7

  几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的`最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

  当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

  如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ??

  3的倍数有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍数,6是它们的最小公倍数。。

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

小升初数学知识点6

  (一)小数

  1、小数的意义

  把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位十分之一和整数部分的最低单位一之间的进率也是10。

  2、小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。

  带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。

  有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.333.1415926

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:

  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是9,0.5454的循环节是54。

  纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.1110.5656

  混循环小数:循环节不是从小数部分第一位开始的',叫做混循环小数。3.12220.03333

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。

  (二)分数

  1、分数的意义

  把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

  2、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  3、约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (三)百分数

  表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。

  以上就是小编为大家整理的小升初数学知识点:小数、百分数、分数。

小升初数学知识点7

  综合行程知识点:

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水 速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  经典例题:

  1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  解:

  根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

  根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

  可以得出马与羊的速度比是21x:20x=21:20

  根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的.份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

  2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

  答案720千米。

  由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

  3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。

  解:

  600÷12=50,表示哥哥、弟弟的速度差

  600÷4=150,表示哥哥、弟弟的速度和

  (50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

  (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

  600÷100=6分钟,表示跑的快者用的时间

  600/50=12分钟,表示跑得慢者用的时间

  4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  答案为53秒

  算式是(140+125)÷(22-17)=53秒

  可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

  5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

  答案为100米

  300÷(5-4.4)=500秒,表示追及时间

  5×500=2500米,表示甲追到乙时所行的路程

  2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

小升初数学知识点8

  一、线、角

  1.直线没有端点,没有长度,可以无限延伸。

  2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。

  3.在一条直线上的一个点可以引出两条射线。

  4.线段有两个端点,可以测量长度。圆的半径、直径都是线段。

  5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

  6.几个易错的角边关系:

  (1)平角的两边是射线,平角不是直线。

  (2)三角形、四边形中的角的两边是线段。

  (3)圆心角的两边是线段。

  7.两条直线相交成直角时,这两条直线叫做互相垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  8.从直线外一点到这条直线所画的垂直线段的'长度叫做点到直线的距离。

  9.在同一个平面上不相交的两条直线叫做平行线。

  二、三角形

  1.任何三角形内角和都是180度。

  2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

  3.任何三角形都有三条高。

  4.直角三角形两个锐角的和是90度。

  5.两个三角形等底等高,则它们面积相等。

  6.面积相等的两个三角形,形状不一定相同。

  三、正方形面积

  1.正方形面积:边长边长

  2.正方形面积:两条对角线长度的积2

  四、三角形、四边形的关系

  1.两个完全一样的三角形能组成一个平行四边形。

  2.两个完全一样的直角三角形能组成一个长方形。

  3.两个完全一样的等腰直角三角形能组成一个正方形。

  4.两个完全一样的梯形能组成一个平行四边形。

  五、圆

  1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r2。

  2.一个环形,外圆的半径是R,内圆的半径是r,它的面积是

  3.半圆的周长等于圆的周长的一半加直径。

  六、半圆的周长公式:C=d?2+d或C=pr+2r

  4.半圆面积=圆的面积/2

  5.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  七、圆柱、圆锥

  1.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

  2.如果把圆柱的侧面展开,得到一个正方形,那么圆柱的底面周长和高相等。

  3.把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,表面积增加了两个面,增加的面积是rh2。

  4.把一个圆柱沿着底面直径劈开,得到两个半圆柱体,表面积和比原来增加了两个长方形的面,增加的面积和是dh2。

  5.把一个圆柱加工成一个最大的圆锥,那么圆柱与圆锥等底等高,削去的圆柱的体积占圆柱体积的,削去的圆柱的体积占圆锥体积的2倍。

  6.把一个圆柱截成几段,增加的表面积是底面圆,增加的面的个数是:截的次数2。

小升初数学知识点9

  一 统计表

  (一)意义

  * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

  (二)组成部分

  * 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

  (三)种类

  * 单式统计表:只含有一个项目的统计表。

  * 复式统计表:含有两个或两个以上统计项目的统计表。

  * 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

  (四)制作步骤

  1搜集数据

  2整理数据:

  要根据制表的目的和统计的.内容,对数据进行分类。

  3设计草表:

  要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

  4 正式制表:

  把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

  小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的小升初数学简单的统计知识点能让大家在小升初的备考过程助大家一臂之力!

小升初数学知识点10

  基本公式:

  ①工作总量=工作效率×工作时间

  ②工作效率=工作总量÷工作时间

  ③工作时间=工作总量÷工作效率

  基本思路:

  ①假设工作总量为“1”(和总工作量无关);

  ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间。

  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

  经验简评:合久必分,分久必合。

  本文导航 1、首页2、工程问题练习题及解析 二、工程问题练习题及解析

  1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

  解:1/20+1/16=9/80表示甲乙的工作效率

  9/80×5=45/80表示5小时后进水量

  1-45/80=35/80表示还要的进水量

  35/80÷(9/80-1/10)=35表示还要35小时注满

  答:5小时后还要35小时就能将水池注满。

  2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的'工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

  解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

  又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

  设合作时间为x天,则甲独做时间为(16-x)天

  1/20*(16-x)+7/100*x=1

  x=10

  答:甲乙最短合作10天

  3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

  解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

  (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

  根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

  所以1-9/10=1/10表示乙做6-4=2小时的工作量。

  1/10÷2=1/20表示乙的工作效率。

  1÷1/20=20小时表示乙单独完成需要20小时。

  答:乙单独完成需要20小时。

小升初数学知识点11

  基本概念与性质:

  分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位“1”平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的'差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  经典例题:

  例、某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为6:5。(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%。(3)甲、乙两校获二等奖的人数之比为5:6。

  问甲校获二等奖的人数占该校获奖总人数的百分数是几?

  解析:

  根据条件(2)和(3):二等奖总人数为11份,那么一等奖总人数为11×2÷3=22/3;转化为整数比,二等奖与一等奖人数比为33:22;甲、乙两校二等奖人数比为5:6=15:18,甲、乙两校获奖人数比为6:5=30:25。所以,甲校获二等奖的人数占该校获奖总人数的:15÷30=50%

  另一种算法:

  获奖总人数6+5=11份,二等奖人数11×60%=6.6份,甲校二等奖人数6.6×5/11=3份

  所以,甲校二等奖人数占该校获奖总人数的3÷6=50%

小升初数学知识点12

  1、 半圆的周长和圆的周长的一半有区别。

  2、 0.52÷0.17商是3,余数不是1而是0.01

  3、 在求总人数、总只数、总棵数这类应用题时,结果不可能是分数和小数。

  4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  5、 无盖的水桶,水池,金鱼缸,水槽等,求表面积时一定要减少一个底面积。

  6、 求大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。

  7、 求××率或百分之几的列式中,最后必须“×100﹪”。

  8、 大数的读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  9、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  10、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多孩子直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的4000000面积单位。

  11、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  12、比的.问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  13、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  14、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  15、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多孩子没有看到kg与g的单位不一致,直接给出了75的错误答案。(马上点标题下“小升初”关注可获得更多有态度的智慧文章,每天更新哟!)

  16、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  17、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  18、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运

  算、运算顺序以及提取公因数等计算基本功的考察。

  19、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为a米,则平均速度为:(a×2)÷(a÷1+a÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

小升初数学知识点13

  1、循环小数的计算

  两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。

  从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。

  2、分数一元一次方程的求解

  其实很简单,只要孩子能够把过程规范好!

  1.去分母(同乘分母的最小公倍数)

  2.去括号(运用乘法分配律,注意减号后面的括号去掉时要变号!!30%以上的孩子至今未解决这个问题!!!)

  3.移项并合并同类项,保证字母在一边,数字在另一边。(注意不要跳步,以免孩子粗心出错。)

  4.化系数为1,求出解来。(记得解一定把x写作左边,得数写在右边)

  3、乘法分配律和提取公因数

  知识点都会,就是易错。

  要想提好公因数,一定要学会动笔前先观察算式,以下是考察提取公因数的常用方式:

  1.最简单的障眼法是把一个数写成不同的形式,比如可以写成小数、假分数、带分数、百分数,从而隐藏了公因数,这就需要我们熟练这些形式之间的互化,还有一颗火眼金睛;

  2.利用积不变的方式发掘公因数,比如某个数乘以37加上某个数乘以74,看似没有公因数,但是74等于2乘以37,因此某个数乘以74可以变成这个数的2倍再乘以37,从而出现了37这个公因数;

  3.最隐蔽的一种,就是乘除互化,乘以1.2和除以5/6本质上其实是一样的`,通过把除法化为乘法后即可出现公因数,因此拿到一个类似的问题,先把每一项都转化为乘法,再去寻找公因数会比较高效。

  4、连锁约分和整体约分

  约分是分数乘除法特有的巧算技巧点。能够把很多复杂不好计算的部分通过约分约去,从而达到简化计算的目的。要理解透这两种约分,只需把它们的起源找到就很简单了。

  5、换元

  换元体现了“整体打包”这种经典的数学思想。这种用抽象的未知数来代表一个复杂的数或算式的思维方式对习惯了具体数的四则运算的小学生来说还是很有挑战的。

  6、裂项

  总的来讲,它的难度很高。不过由于大多数小升初裂项题都很简单,因此有的孩子会选择图方便去死记住规律。这样其实非常危险,第一,现在雅系的小升初考试裂项难度远超普通题,只会做最简单的裂项是远远不够的;第二,公式中有一些细节容易被记错,如果没有理解的辅助,在真实考试的紧张状态下很容易出错。

小升初数学知识点14

  一、数学基础知识整理(一到六年级)

  一年级九九乘法口诀表。学会基础加减乘。

  二年级完善乘法口诀表,学会除混合运算,基础几何图形。

  三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

  四年级线角自然数整数,素因数梯形对称,分数小数计算。

  五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

  六年级比例百分比概率,圆扇圆柱及圆锥。

  二、必背定义、定理公式

  三角形的面积=底×高÷2。 公式 S= a×h÷2

  正方形的面积=边长×边长 公式 S= a×a

  长方形的面积=长×宽 公式 S= a×b

  平行四边形的面积=底×高 公式 S= a×h

  点击下载:数学基础知识整理

  梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的体积=长×宽×高 公式:V=abh

  长方体(或正方体)的体积=底面积×高 公式:V=abh

  正方体的体积=棱长×棱长×棱长 公式:V=aaa

  圆的周长=直径×π 公式:L=πd=2πr

  圆的面积=半径×半径×π 公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的`表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

小升初数学知识点15

  一、数学知识点:分数应用题

  1、知识点概述

  分数应用题是研究数量之间份数关系的典型应用题,包括三种类型:求一个数是另一个数的几分之几;求一个数的几分之几是多少;已知一个数的几分之几是多少,求这个数。

  分数应用题一方面是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的.关键.

  2、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

  3、怎样找准分数应用题中单位“1”

  (1)部分数和总数

  在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

  例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

  解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

  (2)两种数量比较

  分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

  例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),

  解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。