当前位置: 聚优范文网>儿童学堂>少儿数学>小升初数学知识点

小升初数学知识点

时间:2024-05-28 07:01:01 少儿数学 我要投稿

[必备]小升初数学知识点15篇

  在平平淡淡的学习中,说起知识点,应该没有人不熟悉吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些知识点能够真正帮助到我们呢?以下是小编帮大家整理的小升初数学知识点,仅供参考,希望能够帮助到大家。

[必备]小升初数学知识点15篇

小升初数学知识点1

  何谓数、行、形、算,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的`考察更是重中之重,往往占到一张试卷的50%。

  知识体系:

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  余数问题:

  (1)带余除式的理解和运用;

  (2)同余的性质和运用;

  中国剩余定理奇偶问题:

  (1)奇偶与四则运算;

  (2)奇偶性质

  在实际解题过程中的应用完全平方数:

  (1)完全平方数的判断和性质

  (2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  整除问题:

  (1)数的整除的特征和性质 (小升初分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  这四个问题我们需要掌握到什么样的程度?

  上文是小升初数学考试知识点,希望文章对您有所帮助!

小升初数学知识点2

  1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的`小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。

  3、在小数除法中的发现:

  ①当除数大于1时,商小于被除数。如:3.5÷5=0.7

  ②当除数小于1时,商大于被除数。如:3.5÷0.5=7

  4、小数除法的验算方法:

  ①商×除数=被除数(通用)②被除数÷商=除数

  5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。

  6、循环小数问题:

  小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。

小升初数学知识点3

  1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率

  面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。

  体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。

  质量单位有:吨、千克、克,写出它们之间的进率。

  时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。

  2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。

  小月有:4、6、9、11月,共4个,每月30天。 二月平年是28天,闰年是29天。

  3.一年有4个季度,每个季度3个月。

  4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。

  5.名数:把计量得到的数和单位名称合起来叫做名数。

  单名数:只带有一个单位名称的叫做单名数。

  复名数:带有两个或两个以上单位名称的叫做复名数。

  6.名数的.改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。

小升初数学知识点4

  1、除和除以的区别

  a除以b或a被b除列式为:a÷b,a除b,或用a去除b,列式为:b÷a

  2、半圆的周长≠圆周长的一半

  这两个看似相同,实则不同,因为半圆的周长还多出一个直径。

  3、压路机前进后的相关计算

  压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  4、“无盖”易算成“有盖”

  无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。

  5、大数比小数大几分之几:

  (大数—小数)÷单位“1”的量。

  6、绳子长短比较问题

  两根同样长的绳子,一根剪去1/2米另一根剪去1/2,剩下的长度无法比较;

  7、 余数商问题

  0.52÷0.17商是3,余数不是1而是0.01

  8、百分比相关:

  求××率或百分之几的列式中,最后必须“×100%”

  9、切忌半个人、半棵树:

  在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数

  10、改写数的注意:

  改写一个准确数,不要求“四舍五入”取近似值时,一定要把“万”或“亿”后面的数写到小数部分;只有大约或省略 “万”或“亿”位后面的尾数时,才用“四舍五入”求近似值,末尾一定要写“万”或“亿”

  11、大数读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  12、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  13、 数大小排序问题:注意题目要求的大小顺序

  【相关例题】把3.14,π,22/7按照从大往小的顺序排列____________

  【错误答案】3.14<π<22/7

  【正确答案】22/7>π>3.14

  【例题评析】题目怎么要求就怎么来,别瞎胡闹。并且一定要写原数排序。

  14、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多同学直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的4000000面积单位。

  15、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  16、比的问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  17、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  18、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的`单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  19、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多同学没有看到kg与g的单位不一致,直接给出了75的错误答案。

  20、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  21、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  22、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运算、运算顺序以及提取公因数等计算基本功的考察。

  23、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为3米,则平均速度为:(3×2)÷(3÷1+3÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

  24、题目有多种情况

  【相关例题】等腰三角形一个角的度数是50度,则它的顶角是_______

  【错误答案】80度

  【正确答案】50度或80度

  【例题评析】很多类型的题目,结果往往不止一个。同学们一定要注意思考的缜密性,平时做题时多总结,尽量把所有情况都想全。不要做出一个答案后,就以为大功告成。

  25、注意表述的完整性

  【相关例题】一个三角形的三个内角之比为1:1:2,这是一个_______三角形。

  【错误答案】等腰三角形

  【正确答案】等腰直角三角形

  【例题评析】这种题目,只有平时训练时多思考,多总结,考试时才能保证不犯错误。

  26、正方的面积与周长的比较

  边长为4cm的正方形的面积和周长不!相!等!,虽然数值结果都是16,但因为单位不同,所以16厘米≠16平方厘米,这是无法比较的!

小升初数学知识点5

  1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。

  两端都在圆上,并过圆心的线段叫直径,用d表示。

  2.圆有无数条半径,有无数条直径。

  3.圆心决定圆的位置,半径决定圆的大小。

  4.把圆对折,再对折就能找到圆心。

  5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

  6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

  圆的周长

  8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

  9.C=d或C=r. 半圆的周长

  10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

  7=21.98 8=25.12 9=28.26 10=31.4

  圆的面积

  11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

  12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

  17^2=289 18^2=324 19^2=361 20^2=400

  13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。

  面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  周长相同时,圆面积最大,正方形居中,长方形面积最小。

  周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

  第四单元:比的认识

  15.两个数相除,又叫做这两个数的比。比的后项不能为0.

  16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。

  列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。

  二、分数乘法

  分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

  2、分数乘分数是求一个数的几分之几是多少。

  分数的化简:分子、分母同时除以它们的最大公因数。

  关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。

  分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

  倒数的意义:乘积为1的两个数互为倒数。

  特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  求倒数的方法:1、求分数的倒数是交换分子分母的位置。

  2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

  1的倒数是它本身。因为1*1=1

  0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)

  三、分数除法

  分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。

  除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

  分数除法的基本性质:强调0除外

  比:两个数相除也叫两个数的'比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。

  化简比:

  1、用比的前项和后项同时除以它们的最大公约数。

  2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

  3、两个小数的比,向右移动小数点的位置。也是先化成整数比。

  比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  常用来做判断的:

  一个数除以小于1的数,商大于被除数。

  一个数除以1,商等于被除数。

  一个数除以大于1的数,商小于被除数。

  五、百分数

  百分数的约分:百分数化成分数,写成分数形式,再约分。

  分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。

  百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

  六、统计

  条形统计图可以知道每个数量的多少。

  折现统计图可以知数量的增减,

  扇形统计图可以知道部分和总量的关系。

小升初数学知识点6

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的`坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点7

  1-6年级知识体系

  小学一年级九九乘法口诀表。学会基础加减乘。

  小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

  小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

  小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

  小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

  小学六年级比例百分比概率,圆扇圆柱及圆锥。

  必背定义、定理公式

  三角形的面积=底×高÷2。公式S=a×h÷2

  正方形的面积=边长×边长公式S=a×a

  长方形的面积=长×宽公式S=a×b

  平行四边形的面积=底×高公式S=a×h

  梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的体积=长×宽×高公式:V=abh

  长方体(或正方体)的体积=底面积×高公式:V=abh

  正方体的体积=棱长×棱长×棱长公式:V=aaa

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:用分子的积做分子,用分母的积做分母。

  分数的除法则:除以一个数等于乘以这个数的倒数。

  一、算术方面

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

  6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

  简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8、什么叫方程式?答:含有未知数的等式叫方程式。

  9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

  16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

  19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20、一个数除以分数,等于这个数乘以分数的倒数。

  21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

  二、数量关系计算公式方面

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  一个加数=和+另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  6、1公里=1千米1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1吨=1000千克

  1千克=1000克=

  1公斤=1市斤

  1公顷=10000平方米。

  1亩=666.666平方米。

  1升=1立方分米=1000毫升1毫升=1立方厘米

  7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

  比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

  8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

  9、比例的基本性质:在比例里,两外项之积等于两内项之积。

  10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

  12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  15、要学会把小数化成分数和把分数化成小数的化发。

  16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的'一个,叫做公约数。)

  17、互质数:公约数只有1的两个数,叫做互质数。

  18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)

  21、最简分数:分子、分母是互质数的分数,叫做最简分数。

  分数计算到最后,得数必须化成最简分数。

  个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

  22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

  23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

  30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

  32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

  如3.141592654

  33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……

  34、什么叫代数?代数就是用字母代替数。

  35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c

  三、一般运算规则

  1每份数×份数=总数

  总数÷每份数=份数

  总数÷份数=每份数

  21倍数×倍数=几倍数

  几倍数÷1倍数=倍数

  几倍数÷倍数=1倍数

  3速度×时间=路程

  路程÷速度=时间

  路程÷时间=速度

  4单价×数量=总价

  总价÷单价=数量

  总价÷数量=单价

  5工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  6加数+加数=和

  和-一个加数=另一个加数

  7被减数-减数=差

  被减数-差=减数差+减数=被减数

  8因数×因数=积

  积÷一个因数=另一个因数

  9被除数÷除数=商

  被除数÷商=除数商×除数=被除数

  四、小学数学图形计算公式

  1正方形

  C周长S面积a边长

  周长=边长×4C=4a

  面积=边长×边长S=a×a

  2正方体

  V:体积a:棱长

  表面积=棱长×棱长×6S表=a×a×6

  体积=棱长×棱长×棱长V=a×a×a

  3长方形

  C周长S面积a边长

  周长=(长+宽)×2C=2(a+b)

  面积=长×宽S=ab

  4长方体

  V:体积s:面积a:长b:宽h:高

  表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

  体积=长×宽×高V=abh

  5三角形

  s面积a底h高

  面积=底×高÷2s=ah÷2

  三角形高=面积×2÷底三角形底=面积×2÷高

  6平行四边形

  s面积a底h高

  面积=底×高s=ah

  7梯形

  s面积a上底b下底h高

  面积=(上底+下底)×高÷2s=(a+b)×h÷2

  8圆形

  S面积C周长∏d=直径r=半径

  周长=直径×∏=2×∏×半径C=∏d=2∏r

  面积=半径×半径×∏

  9圆柱体

  v:体积h:高s;底面积r:底面半径c:底面周长

  侧面积=底面周长×高表面积=侧面积+底面积×2

  体积=底面积×高体积=侧面积÷2×半径

  10圆锥体

  v:体积h:高s;底面积r:底面半径

  体积=底面积×高÷3

小升初数学知识点8

  一.整数和小数

  1.最小的一位数是1,最小的自然数是0

  2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

  3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

  4.小数的分类:小数 有限小数

  无限循环小数

  无限小数

  无限不循环小数

  5.整数和小数都是按照十进制计数法写出的数。

  6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

  7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

  小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

  二.数的整除

  1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

  2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

  3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

  4.按能否被2整除,非0的.自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

  5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

  质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

  最小的质数是2,最小的合数是4

  1~20以内的质数有:2、3、5、7、11、13、17、19

  1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

  6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

  能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

小升初数学知识点9

  什么叫做单项式和多项式?

  不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母

  多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的.运用整数及分数的分解与分拆(重点、难点)

  整除问题:

  (1)数的整除的特征和性质 (新初一分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  这四个问题我们需要掌握到什么样的程度?

  从近几年的来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张新初一分班试卷的完成应该是能取得很好的成绩的。对此,酷学网给出学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点10

  小升初数学知识点倍数特征:

  2的倍数的特征:各位是0,2,4,6,8。

  3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

  5的倍数的特征:各位是0,5。

  4(或25)的倍数的特征:末2位是4(或25)的倍数。

  8(或125)的倍数的特征:末3位是8(或125)的倍数。

  7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。

  17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。

  19(或53)的'倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。

  23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

  倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

  互质关系的两个数,最大公约数为1,最小公倍数为乘积。

  两个数分别除以他们的最大公约数,所得商互质。

  两个数的与最小公倍数的乘积等于这两个数的乘积。

  两个数的公约数一定是这两个数最大公约数的约数。

  1既不是质数也不是合数。

  用6去除大于3的质数,结果一定是1或5。

  小升初数学知识总结:奇数与偶数

  偶数:个位是0,2,4,6,8的数。

  奇数:个位不是0,2,4,6,8的数。

  偶数偶数=偶数 奇数奇数=奇数 奇数偶数=奇数

  偶数个偶数相加是偶数,奇数个奇数相加是奇数。

  偶数偶数=偶数 奇数奇数=奇数 奇数偶数=偶数

  相临两个自然数之和为奇数,相临自然数之积为偶数。

  如果乘式中有一个数为偶数,那么乘积一定是偶数。

  奇数偶数

  小升初数学知识总结:整除

  如果c|a, c|b,那么c|(ab)

  如果,那么b|a, c|a

  如果b|a, c|a,且(b,c)=1, 那么bc|a

  如果c|b, b|a, 那么c|a

小升初数学知识点11

  年龄问题的三大规律:

  1.两人的年龄差是不变的;

  2.两人年龄的倍数关系是变化的量;

  3.随着时间的推移,两人的年龄都是增加相等的量.

  年龄问题的核心是:大小年龄差是个不变的量,而年龄的倍数却年年不同。

  解答年龄问题的一般方法是:

  几年后年龄=年龄差÷倍数差一小年龄,

  几年前年龄=小年龄一年龄差÷倍数差。

  1、父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?

  解析:父女的年龄差是50-14=36岁。年龄差是不变的。当父亲的年龄是女儿的5倍的时候,父亲比女儿大了5-1=4倍。因此,36岁是父亲比女儿多的4倍年龄。那么,当时女儿的年龄是36÷4=9岁。

  因此,14-9=5年前父亲的年龄是女儿的5倍。

  如果公式熟练的话,就是:14-(50-14)÷(5-1)=14-9=5

  10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?

  解析:根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。

  10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。

  由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。

  解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)

  ②儿子现在年龄:5+10=15(岁)

  ③吴昊现在年龄: 5×7+10=45(岁)

  4、甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:

  A.45岁,26岁B.46岁,25岁C.47岁24岁 D.48岁,23岁

  解析:下面是推理过程:假设甲乙的年龄差为X

  则根据甲的.假设,当甲是乙现在的年龄时,乙是4岁。则乙现在的年龄是4+X

  因为甲乙的年龄差是X,那么甲现在的年龄是4+2X

  因此,根据乙的假设,当乙的年龄是4+2X时,甲的年龄是4+2X+X=67

  因此X=(67-4)/3=21

  乙的年龄(67-4)/3+4=25岁,甲的年龄是4+21*2=46岁

  5、今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲、儿子的年龄分别是( )

  A.60岁,6岁 B.50岁,5岁 C.40岁,4岁 D.30岁,3岁

  解析:依据“年龄差不变”这个关键和核心,今年父亲年龄是儿子年龄的10倍,也即父子年龄差是9倍儿子的年龄。6年后父亲年龄是儿子年龄的4倍,也即父子年龄差是3倍儿子的年龄(6年后的年龄)。依据年龄差不变,我们可知

  9倍儿子现在的年龄=3倍儿子6年后的年龄

  即9倍儿子现在的年龄=3×(儿子现在的年龄+6岁)

  即6倍儿子现在的年龄=3×6岁

  儿子现在的年龄=3岁

小升初数学知识点12

  1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

  2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12

  4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

  5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2

  正方体的表面积=棱长×棱长×6??用字母表示:S=

  6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100

  7、体积:物体所占空间的大小叫做物体的.体积。

  8、长方体的体积=长×宽×高

  用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)

  高=体积÷(长×宽)

  正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a

  9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000

  10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

  11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

  把低级单位聚成高级单位,用低级单位数除以进率。

  12、容积:容器所能容纳物体的体积。

  13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米

  14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

  小学数学0的含义是什么

  1、没有任何东西

  2、数轴的前点(原点)

  3、可以表示分界

  4、可以表示起点

  5、可以起到占位作用

  拓展:

  小升初数学备考比和比例知识点

  1.比的意义:两个数相除又叫做两个数的比。

  比例的意义:表示两个比相等的式子叫做比例。

  2.求比值:比的前项除以比的后项所得的商叫做比值。

  3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

  比例的基本性质:在比例里,两个外项的积等于两个内项的积。

  4.应用比的基本性质可以化简比;

  应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。

  5.用字母表示比与除法和分数的关系。

  a:b=ab=(b0)

  6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。

  7.图上距离:实际距离=比例尺

  或=比例尺

  实际距离=图上距离比例尺 图上距离=实际距离比例尺

  8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。

  化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。

  9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

  用式子表示:=k(一定),用图表示正比例关系是一条直线。

  10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

  用式子表示:xy=k(一定),用图表示反比例关系是一条曲线。

  十.简单的统计

  1.常见的统计图有条形统计图、折线统计图和扇形统计图。

  2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。 作用:从图中能清楚地看出各数量的多少,便于相互比较。

  折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。

  十一.公式的整理

  平面图形:

  1.长方形:

  周长=(长+宽)2 C长=(a+b)2

  面积=长宽 S长=a b

  2.正方形:

  周长=边长4 C正=a4

  面积=边长边长 S正=aa

  3.平行四边形的面积=底高 S平=ah

  4.三角形的面积=底高2 S三=ah2

  5.梯形的面积=(上底+下底)高2 S梯=(a+b)h2

  6.圆的周长=直径3.14 C圆=d

  圆的周长=半径23.14 C圆=2r

  圆的面积=半径的平方圆周率 S圆=r2

  立体图形:

  1.长方体

  表面积=(长宽+长高+宽高)2 S长表=(ab+ah+bh)2

  体积=长宽高 V长=abh

  2.正方体

  表面积=棱长棱长6 S正表=aa6

  体积=棱长棱长棱长 V正=a3

  3.圆柱

  侧面积=底面周长高

  表面积=侧面积+两个底面积

  体积=底面积高

  4.以上立体图形的表面积、体积可以统一成公式为:

  表面积=底面周长高+两个底面积 体积=底面积高

  5.圆锥的体积=圆柱的体积3 V锥=sh3

小升初数学知识点13

  1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差

  一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商

  2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

  3.运算定律:

  (1)加法交换律:a+b=b+a 乘法交换律:a×b=b×a

  两个数相加,交换加数的位置,它们的和不变。

  两个数相加,交换因数的位置,它们的积不变。

  (2)加法结合律:(a+b)+c=a+(b+c) 乘法结合律:(a×b)×c=a×(b×c)

  三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

  三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  (3)乘法分配律:(a+b)×c=a×c+b×c

  两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  (4)减法的`性质:a-b-c=a-(b+c) 除法的性质:a÷b÷c=a÷(b×c)

  从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

  一个数连续除以两个数,等于这个数除以两个除数的积。

小升初数学知识点14

  1、线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。

  2、角:从一点引出两条射线所组成的图形叫做角。

  3、角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。

  1、计量角的大小的单位:度,用符号“°”表示。

  2、小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180°。

  3、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)

  4、平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。

  (画图说明)平行线之间垂直线段的长度都相等。

  5、三角形:有三条线段围成的图形叫做三角形。

  6、三角形的分类:

  (1)按角分:锐角三角形、钝角三角形、直角三角形。

  (2)按边分:一般三角形、等腰三角形、等边三角形。

  10、三角形三个内角和是180°。

  11、四边形:由四条线段围成的图形。

  12、圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。

  13、圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。

  14、轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  15、学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形

  16、周长:围成一个图形的所有边长的总和就是这个图形的周长。

  面积:物体的表面或围成的平面图形的大小,叫做它们的面积。

  17、表面积:立体图形所有面的面积的`和,叫做这个立体图形的表面积。

  体积:物体所占空间的大小叫做物体的体积。

  18、长方体、正方体都有12条棱,6个面,8个顶点。

  正方体是特殊的长方体,等边三角形是特殊的等腰三角形。

  19、圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆

  20、圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。

  21、把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

  22、圆周率π是一个无限不循环小数。π=3.141592653……

  23、把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。

  24、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

  25、等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。

  体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的,圆锥的高是圆柱的3倍。

小升初数学知识点15

  第一章数和数的运算

  1 .整数的意义:自然数和0 都是整数。

  2 .自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0 表示。0 也是自然数。

  3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4. 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5.数的整除:整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。如果数a 能被数b(b 0)整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a 的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35 是7 的倍数,7 是35 的约数。一个数的约数的个数是有限的,其中最小的`约数是1,最大的约数是它本身。例如:10的约数有1、2、

  5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。个位上是0、2、4、6、8 的数,都能被2整除,例如:202、480、304,都能被2 整除。。个位上是0或5 的数,都能被5 整除,例如:5、30、405 都能被5 整除。一个数的各位上的数的和能被3 整除,这个数就能被3整除,例如:12、108、204都能被3 整除。一个数各位数上的和能被9 整除,这个数就能被9 整除。能被3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。

  一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256 都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344 都能被8 整除,1125、13375、5000 都能被125整除。能被2 整除的数叫做偶数。不能被2 整除的数叫做奇数。0 也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1 和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12 都是合数。1 不是质数也不是合数,自然数除了1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12 的

  约数有1、2、3、4、6、12;18 的约数有1、2、3、6、9、18。其中,1、2、3、6是12 和1 8 的公约数,6是它们的最大公约数。公约数只有1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  1 和任何自然数互质。相邻的两个自然数互质。

  两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。

  两个合数的公约数只有1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2 的倍数有2、4、6 、8、10、12、14、16、183 的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6 是它们的最小公倍数。。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

《[必备]小升初数学知识点15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【小升初数学知识点】相关文章:

小升初数学知识点05-20

【经典】小升初数学知识点05-21

小升初数学必考知识点03-29

小升初的数学知识点04-11

小升初数学重要知识点04-04

小升初数学知识点(优秀)05-21

小升初数学知识点总结03-05

[优选]小升初数学知识点05-27

[优选]小升初数学知识点总结05-13

(实用)小升初数学知识点总结03-10

[必备]小升初数学知识点15篇

  在平平淡淡的学习中,说起知识点,应该没有人不熟悉吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些知识点能够真正帮助到我们呢?以下是小编帮大家整理的小升初数学知识点,仅供参考,希望能够帮助到大家。

[必备]小升初数学知识点15篇

小升初数学知识点1

  何谓数、行、形、算,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的`考察更是重中之重,往往占到一张试卷的50%。

  知识体系:

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  余数问题:

  (1)带余除式的理解和运用;

  (2)同余的性质和运用;

  中国剩余定理奇偶问题:

  (1)奇偶与四则运算;

  (2)奇偶性质

  在实际解题过程中的应用完全平方数:

  (1)完全平方数的判断和性质

  (2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  整除问题:

  (1)数的整除的特征和性质 (小升初分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  这四个问题我们需要掌握到什么样的程度?

  上文是小升初数学考试知识点,希望文章对您有所帮助!

小升初数学知识点2

  1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的`小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。

  3、在小数除法中的发现:

  ①当除数大于1时,商小于被除数。如:3.5÷5=0.7

  ②当除数小于1时,商大于被除数。如:3.5÷0.5=7

  4、小数除法的验算方法:

  ①商×除数=被除数(通用)②被除数÷商=除数

  5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。

  6、循环小数问题:

  小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。

小升初数学知识点3

  1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率

  面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。

  体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。

  质量单位有:吨、千克、克,写出它们之间的进率。

  时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。

  2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。

  小月有:4、6、9、11月,共4个,每月30天。 二月平年是28天,闰年是29天。

  3.一年有4个季度,每个季度3个月。

  4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。

  5.名数:把计量得到的数和单位名称合起来叫做名数。

  单名数:只带有一个单位名称的叫做单名数。

  复名数:带有两个或两个以上单位名称的叫做复名数。

  6.名数的.改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。

小升初数学知识点4

  1、除和除以的区别

  a除以b或a被b除列式为:a÷b,a除b,或用a去除b,列式为:b÷a

  2、半圆的周长≠圆周长的一半

  这两个看似相同,实则不同,因为半圆的周长还多出一个直径。

  3、压路机前进后的相关计算

  压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  4、“无盖”易算成“有盖”

  无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。

  5、大数比小数大几分之几:

  (大数—小数)÷单位“1”的量。

  6、绳子长短比较问题

  两根同样长的绳子,一根剪去1/2米另一根剪去1/2,剩下的长度无法比较;

  7、 余数商问题

  0.52÷0.17商是3,余数不是1而是0.01

  8、百分比相关:

  求××率或百分之几的列式中,最后必须“×100%”

  9、切忌半个人、半棵树:

  在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数

  10、改写数的注意:

  改写一个准确数,不要求“四舍五入”取近似值时,一定要把“万”或“亿”后面的数写到小数部分;只有大约或省略 “万”或“亿”位后面的尾数时,才用“四舍五入”求近似值,末尾一定要写“万”或“亿”

  11、大数读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  12、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  13、 数大小排序问题:注意题目要求的大小顺序

  【相关例题】把3.14,π,22/7按照从大往小的顺序排列____________

  【错误答案】3.14<π<22/7

  【正确答案】22/7>π>3.14

  【例题评析】题目怎么要求就怎么来,别瞎胡闹。并且一定要写原数排序。

  14、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多同学直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的4000000面积单位。

  15、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  16、比的问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  17、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  18、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的`单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  19、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多同学没有看到kg与g的单位不一致,直接给出了75的错误答案。

  20、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  21、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  22、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运算、运算顺序以及提取公因数等计算基本功的考察。

  23、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为3米,则平均速度为:(3×2)÷(3÷1+3÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

  24、题目有多种情况

  【相关例题】等腰三角形一个角的度数是50度,则它的顶角是_______

  【错误答案】80度

  【正确答案】50度或80度

  【例题评析】很多类型的题目,结果往往不止一个。同学们一定要注意思考的缜密性,平时做题时多总结,尽量把所有情况都想全。不要做出一个答案后,就以为大功告成。

  25、注意表述的完整性

  【相关例题】一个三角形的三个内角之比为1:1:2,这是一个_______三角形。

  【错误答案】等腰三角形

  【正确答案】等腰直角三角形

  【例题评析】这种题目,只有平时训练时多思考,多总结,考试时才能保证不犯错误。

  26、正方的面积与周长的比较

  边长为4cm的正方形的面积和周长不!相!等!,虽然数值结果都是16,但因为单位不同,所以16厘米≠16平方厘米,这是无法比较的!

小升初数学知识点5

  1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。

  两端都在圆上,并过圆心的线段叫直径,用d表示。

  2.圆有无数条半径,有无数条直径。

  3.圆心决定圆的位置,半径决定圆的大小。

  4.把圆对折,再对折就能找到圆心。

  5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

  6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

  圆的周长

  8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

  9.C=d或C=r. 半圆的周长

  10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

  7=21.98 8=25.12 9=28.26 10=31.4

  圆的面积

  11.用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

  12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

  17^2=289 18^2=324 19^2=361 20^2=400

  13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。

  面积相同时,长方形的周长最长,正方形居中,圆周长最短。

  周长相同时,圆面积最大,正方形居中,长方形面积最小。

  周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

  第四单元:比的认识

  15.两个数相除,又叫做这两个数的比。比的后项不能为0.

  16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。

  列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。

  二、分数乘法

  分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

  2、分数乘分数是求一个数的几分之几是多少。

  分数的化简:分子、分母同时除以它们的最大公因数。

  关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。

  分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

  倒数的意义:乘积为1的两个数互为倒数。

  特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  求倒数的方法:1、求分数的倒数是交换分子分母的位置。

  2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

  1的倒数是它本身。因为1*1=1

  0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)

  三、分数除法

  分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。

  除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

  分数除法的基本性质:强调0除外

  比:两个数相除也叫两个数的'比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。

  化简比:

  1、用比的前项和后项同时除以它们的最大公约数。

  2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

  3、两个小数的比,向右移动小数点的位置。也是先化成整数比。

  比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  常用来做判断的:

  一个数除以小于1的数,商大于被除数。

  一个数除以1,商等于被除数。

  一个数除以大于1的数,商小于被除数。

  五、百分数

  百分数的约分:百分数化成分数,写成分数形式,再约分。

  分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。

  百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

  六、统计

  条形统计图可以知道每个数量的多少。

  折现统计图可以知数量的增减,

  扇形统计图可以知道部分和总量的关系。

小升初数学知识点6

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的`坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点7

  1-6年级知识体系

  小学一年级九九乘法口诀表。学会基础加减乘。

  小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

  小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

  小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

  小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

  小学六年级比例百分比概率,圆扇圆柱及圆锥。

  必背定义、定理公式

  三角形的面积=底×高÷2。公式S=a×h÷2

  正方形的面积=边长×边长公式S=a×a

  长方形的面积=长×宽公式S=a×b

  平行四边形的面积=底×高公式S=a×h

  梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的体积=长×宽×高公式:V=abh

  长方体(或正方体)的体积=底面积×高公式:V=abh

  正方体的体积=棱长×棱长×棱长公式:V=aaa

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:用分子的积做分子,用分母的积做分母。

  分数的除法则:除以一个数等于乘以这个数的倒数。

  一、算术方面

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

  6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

  简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8、什么叫方程式?答:含有未知数的等式叫方程式。

  9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

  16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

  19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20、一个数除以分数,等于这个数乘以分数的倒数。

  21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

  二、数量关系计算公式方面

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  一个加数=和+另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  6、1公里=1千米1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1吨=1000千克

  1千克=1000克=

  1公斤=1市斤

  1公顷=10000平方米。

  1亩=666.666平方米。

  1升=1立方分米=1000毫升1毫升=1立方厘米

  7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

  比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

  8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

  9、比例的基本性质:在比例里,两外项之积等于两内项之积。

  10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

  12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  15、要学会把小数化成分数和把分数化成小数的化发。

  16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的'一个,叫做公约数。)

  17、互质数:公约数只有1的两个数,叫做互质数。

  18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)

  21、最简分数:分子、分母是互质数的分数,叫做最简分数。

  分数计算到最后,得数必须化成最简分数。

  个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

  22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

  23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

  30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

  32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

  如3.141592654

  33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……

  34、什么叫代数?代数就是用字母代替数。

  35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c

  三、一般运算规则

  1每份数×份数=总数

  总数÷每份数=份数

  总数÷份数=每份数

  21倍数×倍数=几倍数

  几倍数÷1倍数=倍数

  几倍数÷倍数=1倍数

  3速度×时间=路程

  路程÷速度=时间

  路程÷时间=速度

  4单价×数量=总价

  总价÷单价=数量

  总价÷数量=单价

  5工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  6加数+加数=和

  和-一个加数=另一个加数

  7被减数-减数=差

  被减数-差=减数差+减数=被减数

  8因数×因数=积

  积÷一个因数=另一个因数

  9被除数÷除数=商

  被除数÷商=除数商×除数=被除数

  四、小学数学图形计算公式

  1正方形

  C周长S面积a边长

  周长=边长×4C=4a

  面积=边长×边长S=a×a

  2正方体

  V:体积a:棱长

  表面积=棱长×棱长×6S表=a×a×6

  体积=棱长×棱长×棱长V=a×a×a

  3长方形

  C周长S面积a边长

  周长=(长+宽)×2C=2(a+b)

  面积=长×宽S=ab

  4长方体

  V:体积s:面积a:长b:宽h:高

  表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

  体积=长×宽×高V=abh

  5三角形

  s面积a底h高

  面积=底×高÷2s=ah÷2

  三角形高=面积×2÷底三角形底=面积×2÷高

  6平行四边形

  s面积a底h高

  面积=底×高s=ah

  7梯形

  s面积a上底b下底h高

  面积=(上底+下底)×高÷2s=(a+b)×h÷2

  8圆形

  S面积C周长∏d=直径r=半径

  周长=直径×∏=2×∏×半径C=∏d=2∏r

  面积=半径×半径×∏

  9圆柱体

  v:体积h:高s;底面积r:底面半径c:底面周长

  侧面积=底面周长×高表面积=侧面积+底面积×2

  体积=底面积×高体积=侧面积÷2×半径

  10圆锥体

  v:体积h:高s;底面积r:底面半径

  体积=底面积×高÷3

小升初数学知识点8

  一.整数和小数

  1.最小的一位数是1,最小的自然数是0

  2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

  3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

  4.小数的分类:小数 有限小数

  无限循环小数

  无限小数

  无限不循环小数

  5.整数和小数都是按照十进制计数法写出的数。

  6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

  7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

  小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

  二.数的整除

  1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

  2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

  3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

  4.按能否被2整除,非0的.自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

  5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

  质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

  最小的质数是2,最小的合数是4

  1~20以内的质数有:2、3、5、7、11、13、17、19

  1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

  6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

  能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

小升初数学知识点9

  什么叫做单项式和多项式?

  不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母

  多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的.运用整数及分数的分解与分拆(重点、难点)

  整除问题:

  (1)数的整除的特征和性质 (新初一分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  这四个问题我们需要掌握到什么样的程度?

  从近几年的来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张新初一分班试卷的完成应该是能取得很好的成绩的。对此,酷学网给出学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点10

  小升初数学知识点倍数特征:

  2的倍数的特征:各位是0,2,4,6,8。

  3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

  5的倍数的特征:各位是0,5。

  4(或25)的倍数的特征:末2位是4(或25)的倍数。

  8(或125)的倍数的特征:末3位是8(或125)的倍数。

  7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。

  17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。

  19(或53)的'倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。

  23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

  倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

  互质关系的两个数,最大公约数为1,最小公倍数为乘积。

  两个数分别除以他们的最大公约数,所得商互质。

  两个数的与最小公倍数的乘积等于这两个数的乘积。

  两个数的公约数一定是这两个数最大公约数的约数。

  1既不是质数也不是合数。

  用6去除大于3的质数,结果一定是1或5。

  小升初数学知识总结:奇数与偶数

  偶数:个位是0,2,4,6,8的数。

  奇数:个位不是0,2,4,6,8的数。

  偶数偶数=偶数 奇数奇数=奇数 奇数偶数=奇数

  偶数个偶数相加是偶数,奇数个奇数相加是奇数。

  偶数偶数=偶数 奇数奇数=奇数 奇数偶数=偶数

  相临两个自然数之和为奇数,相临自然数之积为偶数。

  如果乘式中有一个数为偶数,那么乘积一定是偶数。

  奇数偶数

  小升初数学知识总结:整除

  如果c|a, c|b,那么c|(ab)

  如果,那么b|a, c|a

  如果b|a, c|a,且(b,c)=1, 那么bc|a

  如果c|b, b|a, 那么c|a

小升初数学知识点11

  年龄问题的三大规律:

  1.两人的年龄差是不变的;

  2.两人年龄的倍数关系是变化的量;

  3.随着时间的推移,两人的年龄都是增加相等的量.

  年龄问题的核心是:大小年龄差是个不变的量,而年龄的倍数却年年不同。

  解答年龄问题的一般方法是:

  几年后年龄=年龄差÷倍数差一小年龄,

  几年前年龄=小年龄一年龄差÷倍数差。

  1、父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?

  解析:父女的年龄差是50-14=36岁。年龄差是不变的。当父亲的年龄是女儿的5倍的时候,父亲比女儿大了5-1=4倍。因此,36岁是父亲比女儿多的4倍年龄。那么,当时女儿的年龄是36÷4=9岁。

  因此,14-9=5年前父亲的年龄是女儿的5倍。

  如果公式熟练的话,就是:14-(50-14)÷(5-1)=14-9=5

  10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?

  解析:根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。

  10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。

  由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。

  解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)

  ②儿子现在年龄:5+10=15(岁)

  ③吴昊现在年龄: 5×7+10=45(岁)

  4、甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:

  A.45岁,26岁B.46岁,25岁C.47岁24岁 D.48岁,23岁

  解析:下面是推理过程:假设甲乙的年龄差为X

  则根据甲的.假设,当甲是乙现在的年龄时,乙是4岁。则乙现在的年龄是4+X

  因为甲乙的年龄差是X,那么甲现在的年龄是4+2X

  因此,根据乙的假设,当乙的年龄是4+2X时,甲的年龄是4+2X+X=67

  因此X=(67-4)/3=21

  乙的年龄(67-4)/3+4=25岁,甲的年龄是4+21*2=46岁

  5、今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲、儿子的年龄分别是( )

  A.60岁,6岁 B.50岁,5岁 C.40岁,4岁 D.30岁,3岁

  解析:依据“年龄差不变”这个关键和核心,今年父亲年龄是儿子年龄的10倍,也即父子年龄差是9倍儿子的年龄。6年后父亲年龄是儿子年龄的4倍,也即父子年龄差是3倍儿子的年龄(6年后的年龄)。依据年龄差不变,我们可知

  9倍儿子现在的年龄=3倍儿子6年后的年龄

  即9倍儿子现在的年龄=3×(儿子现在的年龄+6岁)

  即6倍儿子现在的年龄=3×6岁

  儿子现在的年龄=3岁

小升初数学知识点12

  1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

  2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12

  4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

  5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2

  正方体的表面积=棱长×棱长×6??用字母表示:S=

  6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100

  7、体积:物体所占空间的大小叫做物体的.体积。

  8、长方体的体积=长×宽×高

  用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)

  高=体积÷(长×宽)

  正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a

  9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000

  10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

  11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

  把低级单位聚成高级单位,用低级单位数除以进率。

  12、容积:容器所能容纳物体的体积。

  13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米

  14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

  小学数学0的含义是什么

  1、没有任何东西

  2、数轴的前点(原点)

  3、可以表示分界

  4、可以表示起点

  5、可以起到占位作用

  拓展:

  小升初数学备考比和比例知识点

  1.比的意义:两个数相除又叫做两个数的比。

  比例的意义:表示两个比相等的式子叫做比例。

  2.求比值:比的前项除以比的后项所得的商叫做比值。

  3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

  比例的基本性质:在比例里,两个外项的积等于两个内项的积。

  4.应用比的基本性质可以化简比;

  应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。

  5.用字母表示比与除法和分数的关系。

  a:b=ab=(b0)

  6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。

  7.图上距离:实际距离=比例尺

  或=比例尺

  实际距离=图上距离比例尺 图上距离=实际距离比例尺

  8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。

  化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。

  9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

  用式子表示:=k(一定),用图表示正比例关系是一条直线。

  10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

  用式子表示:xy=k(一定),用图表示反比例关系是一条曲线。

  十.简单的统计

  1.常见的统计图有条形统计图、折线统计图和扇形统计图。

  2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。 作用:从图中能清楚地看出各数量的多少,便于相互比较。

  折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。

  十一.公式的整理

  平面图形:

  1.长方形:

  周长=(长+宽)2 C长=(a+b)2

  面积=长宽 S长=a b

  2.正方形:

  周长=边长4 C正=a4

  面积=边长边长 S正=aa

  3.平行四边形的面积=底高 S平=ah

  4.三角形的面积=底高2 S三=ah2

  5.梯形的面积=(上底+下底)高2 S梯=(a+b)h2

  6.圆的周长=直径3.14 C圆=d

  圆的周长=半径23.14 C圆=2r

  圆的面积=半径的平方圆周率 S圆=r2

  立体图形:

  1.长方体

  表面积=(长宽+长高+宽高)2 S长表=(ab+ah+bh)2

  体积=长宽高 V长=abh

  2.正方体

  表面积=棱长棱长6 S正表=aa6

  体积=棱长棱长棱长 V正=a3

  3.圆柱

  侧面积=底面周长高

  表面积=侧面积+两个底面积

  体积=底面积高

  4.以上立体图形的表面积、体积可以统一成公式为:

  表面积=底面周长高+两个底面积 体积=底面积高

  5.圆锥的体积=圆柱的体积3 V锥=sh3

小升初数学知识点13

  1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差

  一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商

  2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

  3.运算定律:

  (1)加法交换律:a+b=b+a 乘法交换律:a×b=b×a

  两个数相加,交换加数的位置,它们的和不变。

  两个数相加,交换因数的位置,它们的积不变。

  (2)加法结合律:(a+b)+c=a+(b+c) 乘法结合律:(a×b)×c=a×(b×c)

  三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

  三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  (3)乘法分配律:(a+b)×c=a×c+b×c

  两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  (4)减法的`性质:a-b-c=a-(b+c) 除法的性质:a÷b÷c=a÷(b×c)

  从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

  一个数连续除以两个数,等于这个数除以两个除数的积。

小升初数学知识点14

  1、线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。

  2、角:从一点引出两条射线所组成的图形叫做角。

  3、角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。

  1、计量角的大小的单位:度,用符号“°”表示。

  2、小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180°。

  3、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)

  4、平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。

  (画图说明)平行线之间垂直线段的长度都相等。

  5、三角形:有三条线段围成的图形叫做三角形。

  6、三角形的分类:

  (1)按角分:锐角三角形、钝角三角形、直角三角形。

  (2)按边分:一般三角形、等腰三角形、等边三角形。

  10、三角形三个内角和是180°。

  11、四边形:由四条线段围成的图形。

  12、圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。

  13、圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。

  14、轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  15、学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形

  16、周长:围成一个图形的所有边长的总和就是这个图形的周长。

  面积:物体的表面或围成的平面图形的大小,叫做它们的面积。

  17、表面积:立体图形所有面的面积的`和,叫做这个立体图形的表面积。

  体积:物体所占空间的大小叫做物体的体积。

  18、长方体、正方体都有12条棱,6个面,8个顶点。

  正方体是特殊的长方体,等边三角形是特殊的等腰三角形。

  19、圆柱的三个特点:(1)上下一样粗细(2)侧面是曲面(3)两个底面是相同的圆

  20、圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。

  21、把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

  22、圆周率π是一个无限不循环小数。π=3.141592653……

  23、把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。

  24、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

  25、等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。

  体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的,圆锥的高是圆柱的3倍。

小升初数学知识点15

  第一章数和数的运算

  1 .整数的意义:自然数和0 都是整数。

  2 .自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0 表示。0 也是自然数。

  3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4. 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5.数的整除:整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。如果数a 能被数b(b 0)整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a 的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35 是7 的倍数,7 是35 的约数。一个数的约数的个数是有限的,其中最小的`约数是1,最大的约数是它本身。例如:10的约数有1、2、

  5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。个位上是0、2、4、6、8 的数,都能被2整除,例如:202、480、304,都能被2 整除。。个位上是0或5 的数,都能被5 整除,例如:5、30、405 都能被5 整除。一个数的各位上的数的和能被3 整除,这个数就能被3整除,例如:12、108、204都能被3 整除。一个数各位数上的和能被9 整除,这个数就能被9 整除。能被3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。

  一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256 都能被4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344 都能被8 整除,1125、13375、5000 都能被125整除。能被2 整除的数叫做偶数。不能被2 整除的数叫做奇数。0 也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1 和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12 都是合数。1 不是质数也不是合数,自然数除了1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12 的

  约数有1、2、3、4、6、12;18 的约数有1、2、3、6、9、18。其中,1、2、3、6是12 和1 8 的公约数,6是它们的最大公约数。公约数只有1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  1 和任何自然数互质。相邻的两个自然数互质。

  两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。

  两个合数的公约数只有1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2 的倍数有2、4、6 、8、10、12、14、16、183 的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6 是它们的最小公倍数。。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。