当前位置: 聚优范文网>儿童学堂>少儿数学>小升初数学知识点

小升初数学知识点

时间:2024-05-28 15:44:36 少儿数学 我要投稿

小升初数学知识点15篇【优】

  在我们上学期间,说到知识点,大家是不是都习惯性的重视?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在为没有系统的知识点而发愁吗?以下是小编帮大家整理的小升初数学知识点,希望能够帮助到大家。

小升初数学知识点15篇【优】

小升初数学知识点1

  一、小升初数学知识点:归一问题

  1、概念与类型

  归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题。

  2、归一问题有两种基本类型

  一种是正归一,也称为直进归一。如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;

  另一种是反归一,也称为返回归一。如:修路队6小时修路180千米,照这样修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量。

  3、解题方法

  归一法

  解题时需先根据已知条件,求出一个单位量的数值,再根据题中的条件和问题求出结果。

  基本关系式有

  每份的.工作量(单一量)=总工作量÷份数

  总工作量=每份的工作量(单一量)×份数(正归一)

  份数=总工作量÷每份的工作量(单一量)(反归一)

  倍比法

  有些归一问题可采取同类数量之间进行倍数比较的方法解答,这种方法叫做倍比法。

  在整数范围内,用倍比法解除不尽时,只能用归一法解;用归一法解除不尽时,只能用倍比法解;也有的两种方法都可以用。有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

  二、小升初数学知识点:还原问题

  1、还原问题的定义

  已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题。

  还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.

  2、解还原问题的方法

  核心:倒推法

  注意:两个相反,一是运算次序与原来相反;二是运算方法与原来相反.

  口诀:加减互逆,乘除互逆,要求原数,逆推新数.

小升初数学知识点2

  长度单位换算

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1米=100厘米

  1厘米=10毫米

  面积单位换算

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  体(容)积单位换算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  重量单位换算

  1吨=1000千克

  1千克=1000克

  1千克=1公斤

  人民币单位换算

  1元=10角

  1角=10分

  1元=100分

  时间单位换算

  1世纪=100年

  1年=12月

  大月(31天)有:135781012月

  小月(30天)的有:46911月

  平年2月28天,闰年2月29天

  平年全年365天,闰年全年366天

  1日=24小时

  1时=60分

  1分=60秒

  1时=3600秒

小升初数学知识点3

  一、分数除法

  1、分数除法的意义:

  乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:

  除以一个不为0的数,等于乘这个数的倒数。

  规律(分数除法比较大小时):

  (1)当除数大于1,商小于被除数;

  (2)当除数小于1(不等于0),商大于被除数;

  (3)当除数等于1,商等于被除数。

  [ ]叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

  二、分数除法解决问题

  (未知单位1的量(用除法): 已知单位1的几分之几是多少,求单位1的量。 )

  1、数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是的: 单位1的量分率=分率对应量

  (2)分率前是多或少的意思: 单位1的量(1分率)=分率对应量

  2、解法:(建议:最好用方程解答)

  (1)方程: 根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 分率对应量对应分率 = 单位1的量

  3、求一个数是另一个数的几分之几:就 一个数另一个数

  4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位1的量 或:

  ① 求多几分之几:大数小数 1

  ② 求少几分之几: 1 - 小数大数

  三、比和比的应用

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)

  ∶ ∶ ∶ ∶

  前项 比号 后项 比值

  3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比前 项比号:后 项比值

  除 法被除数除号除 数商

  分 数分 子分数线分 母分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的`基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  (2)用求比值的方法。注意: 最后结果要写成比的形式。

  如: 15∶10 = 1510 = 3/2 = 3∶2

  5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  如: 已知两个量之比为,则设这两个量分别为。

  路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

小升初数学知识点4

  1、循环小数的计算

  两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。

  从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。

  2、分数一元一次方程的求解

  其实很简单,只要孩子能够把过程规范好!

  1.去分母(同乘分母的最小公倍数)

  2.去括号(运用乘法分配律,注意减号后面的括号去掉时要变号!!30%以上的孩子至今未解决这个问题!!!)

  3.移项并合并同类项,保证字母在一边,数字在另一边。(注意不要跳步,以免孩子粗心出错。)

  4.化系数为1,求出解来。(记得解一定把x写作左边,得数写在右边)

  3、乘法分配律和提取公因数

  知识点都会,就是易错。

  要想提好公因数,一定要学会动笔前先观察算式,以下是考察提取公因数的常用方式:

  1.最简单的障眼法是把一个数写成不同的形式,比如可以写成小数、假分数、带分数、百分数,从而隐藏了公因数,这就需要我们熟练这些形式之间的互化,还有一颗火眼金睛;

  2.利用积不变的方式发掘公因数,比如某个数乘以37加上某个数乘以74,看似没有公因数,但是74等于2乘以37,因此某个数乘以74可以变成这个数的2倍再乘以37,从而出现了37这个公因数;

  3.最隐蔽的一种,就是乘除互化,乘以1.2和除以5/6本质上其实是一样的,通过把除法化为乘法后即可出现公因数,因此拿到一个类似的问题,先把每一项都转化为乘法,再去寻找公因数会比较高效。

  4、连锁约分和整体约分

  约分是分数乘除法特有的巧算技巧点。能够把很多复杂不好计算的部分通过约分约去,从而达到简化计算的目的。要理解透这两种约分,只需把它们的起源找到就很简单了。

  5、换元

  换元体现了“整体打包”这种经典的数学思想。这种用抽象的未知数来代表一个复杂的`数或算式的思维方式对习惯了具体数的四则运算的小学生来说还是很有挑战的。

  6、裂项

  总的来讲,它的难度很高。不过由于大多数小升初裂项题都很简单,因此有的孩子会选择图方便去死记住规律。这样其实非常危险,第一,现在雅系的小升初考试裂项难度远超普通题,只会做最简单的裂项是远远不够的;第二,公式中有一些细节容易被记错,如果没有理解的辅助,在真实考试的紧张状态下很容易出错。

小升初数学知识点5

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的'坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点6

  1.和差倍问题

  和差问题 和倍问题 差倍问题

  已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数

  公式适用范围 已知两个数的和,差,倍数关系

  公式 ①(和-差)2=较小数

  较小数+差=较大数

  和-较小数=较大数

  ②(和+差)2=较大数

  较大数-差=较小数

  和-较大数=较小数

  和(倍数+1)=小数

  小数倍数=大数

  和-小数=大数

  差(倍数-1)=小数

  小数倍数=大数

  小数+差=大数

  关键问题 求出同一条件下的

  和与差 和与倍数 差与倍数

  2.年龄问题的三个基本特征:

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的;

  3.归一问题的基本特点:问题中有一个不变的量,一般是那个单一量,题目一般用照这样的速度等词语来表示。

  关键问题:根据题目中的条件确定并求出单一量;

  4.植树问题

  基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树

  基本公式 棵数=段数+1

  棵距段数=总长 棵数=段数-1

  棵距段数=总长 棵数=段数

  棵距段数=总长

  关键问题 确定所属类型,从而确定棵数与段数的关系

  5.鸡兔同笼问题

  基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

  基本思路:

  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

  ②假设后,发生了和题目条件不同的差,找出这个差是多少;

  ③每个事物造成的差是固定的,从而找出出现这个差的原因;

  ④再根据这两个差作适当的调整,消去出现的差。

  基本公式:

  ①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)

  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)

  关键问题:找出总量的差与单位量的差。

  6.盈亏问题

  基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

  基本题型:

  ①一次有余数,另一次不足;

  基本公式:总份数=(余数+不足数)两次每份数的差

  ②当两次都有余数;

  基本公式:总份数=(较大余数一较小余数)两次每份数的差

  ③当两次都不足;

  基本公式:总份数=(较大不足数一较小不足数)两次每份数的差

  基本特点:对象总量和总的组数是不变的。

  关键问题:确定对象总量和总的组数。

  7.牛吃草问题

  基本思路:假设每头牛吃草的速度为1份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

  基本特点:原草量和新草生长速度是不变的;

  关键问题:确定两个不变的量。

  基本公式:

  生长量=(较长时间长时间牛头数-较短时间短时间牛头数)(长时间-短时间);

  总草量=较长时间长时间牛头数-较长时间生长量;

  8.周期循环与数表规律

  周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

  周期:我们把连续两次出现所经过的时间叫周期。

  关键问题:确定循环周期。

  闰 年:一年有366天;

  ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

  平 年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  9.平均数

  基本公式:①平均数=总数量总份数

  总数量=平均数总份数

  总份数=总数量平均数

  ②平均数=基准数+每一个数与基准数差的和总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算.

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差; 再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

  10.抽屉原理

  抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

  例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

  ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

  观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

  抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:

  ①k=[n/m ]+1个物体:当n不能被m整除时。

  ②k=n/m个物体:当n能被m整除时。

  理解知识点:[X]表示不超过X的最大整数。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

  11.定义新运算

  基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

  基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

  关键问题:正确理解定义的运算符号的意义。

  注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

  ②每个新定义的运算符号只能在本题中使用。

  12.数列求和

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示.

  基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an = a1+(n-1)d;

  通项=首项+(项数一1) 公差;

  数列和公式:sn,= (a1+ an)n

  数列和=(首项+末项)项数

  项数公式:n= (an+ a1)

  项数=(末项-首项)公差+1;

  公差公式:d =(an-a1))(n-1);

  公差=(末项-首项)(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式;

  13.二进制及其应用

  十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。

  =An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7++A3102+A2101+A1100

  注意:N0=1;N1=N(其中N是任意自然数)

  二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

  (2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7

  ++A322+A221+A120

  注意:An不是0就是1。

  十进制化成二进制:

  ①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

  ②先找出不大于该数的2的.n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

  14.加法乘法原理和几何计数

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

  关键问题:确定工作的分类方法。

  基本特征:每一种方法都可完成任务。

  乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1m2....... mn种不同的方法。

  关键问题:确定工作的完成步骤。

  基本特征:每一步只能完成任务的一部分。

  直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

  直线特点:没有端点,没有长度。

  线段:直线上任意两点间的距离。这两点叫端点。

  线段特点:有两个端点,有长度。

  射线:把直线的一端无限延长。

  射线特点:只有一个端点;没有长度。

  ①数线段规律:总数=1+2+3++(点数一1);

  ②数角规律=1+2+3++(射线数一1);

  ③数长方形规律:个数=长的线段数宽的线段数:

  ④数长方形规律:个数=11+22+33++行数列数

  15.质数与合数

  质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

  合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

  质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

  分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

  分解质因数的标准表示形式:N=,其中a1、a2、a3an都是合数N的质因数,且a1 p

  求约数个数的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)

  互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

  16.约数与倍数

  约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

  公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  最大公约数的性质:

  1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

  2、 几个数的最大公约数都是这几个数的约数。

  3、 几个数的公约数,都是这几个数的最大公约数的约数。

  4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

  例如:12的约数有1、2、3、4、6、12;

  18的约数有:1、2、3、6、9、18;

  那么12和18的公约数有:1、2、3、6;

  那么12和18最大的公约数是:6,记作(12,18)=6;

  求最大公约数基本方法:

  1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

  2、短除法:先找公有的约数,然后相乘。

  3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

  公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  12的倍数有:12、24、36、48

  18的倍数有:18、36、54、72

  那么12和18的公倍数有:36、72、108

  那么12和18最小的公倍数是36,记作[12,18]=36;

  最小公倍数的性质:

  1、两个数的任意公倍数都是它们最小公倍数的倍数。

  2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

  求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

  17.数的整除

  一、基本概念和符号:

  1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  2、常用符号:整除符号|,不能整除符号因为符号∵,所以的符号

  二、整除判断方法:

  1. 能被2、5整除:末位上的数字能被2、5整除。

  2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4. 能被3、9整除:各个数位上数字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6. 能被11整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7. 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

  2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  18.余数及其应用

  基本概念:对任意自然数a、b、q、r,如果使得ab=qr,且0

  余数的性质:

  ①余数小于除数。

  ②若a、b除以c的余数相同,则c|a-b或c|b-a。

  ③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

  ④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

  19.余数、同余与周期

  一、同余的定义:

  ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

  ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作ab(mod m),读作a同余于b模m。

  二、同余的性质:

  ①自身性:aa(mod m);

  ②对称性:若ab(mod m),则ba(mod m);

  ③传递性:若ab(mod m),bc(mod m),则a c(mod m);

  ④和差性:若ab(mod m),cd(mod m),则a+cb+d(mod m),a-cb-d(mod m);

  ⑤相乘性:若a b(mod m),cd(mod m),则ac bd(mod m);

  ⑥乘方性:若ab(mod m),则anbn(mod m);

  ⑦同倍性:若a b(mod m),整数c,则ac bc(mod m

  三、关于乘方的预备知识:

  ①若A=ab,则MA=Mab=(Ma)b

  ②若B=c+d则MB=Mc+d=McMd

  四、被3、9、11除后的余数特征:

  ①一个自然数M,n表示M的各个数位上数字的和,则Mn(mod 9)或(mod 3);

  ②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则MY-X或M11-(X-Y)(mod 11);

  五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-11(mod p)。

  20.分数与百分数的应用

  基本概念与性质:

  分数:把单位1平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位1平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  21.分数大小的比较

  基本方法:

  ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

  ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

  ③基准数法:确定一个标准,使所有的分数都和它进行比较。

  ④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

  ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

  ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

  ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

  ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

  ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

  ⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

  22.分数拆分

  一、 将一个分数单位分解成两个分数之和的公式:

  ① =+;

  ②=+(d为自然数);

  23.完全平方数

  完全平方数特征:

  1. 末位数字只能是:0、1、4、5、6、9;反之不成立。

  2. 除以3余0或余1;反之不成立。

  3. 除以4余0或余1;反之不成立。

  4. 约数个数为奇数;反之成立。

  5. 奇数的平方的十位数字为偶数;反之不成立。

  6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。

  7. 两个相临整数的平方之间不可能再有平方数。

  平方差公式:X2-Y2=(X-Y)(X+Y)

  完全平方和公式:(X+Y)2=X2+2XY+Y2

  完全平方差公式:(X-Y)2=X2-2XY+Y2

  24.比和比例

  比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

  比值:比的前项除以后项的商,叫做比值。

  比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

  比例:表示两个比相等的式子叫做比例。a:b=c:d或

  比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

  正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

  反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

  比例尺:图上距离与实际距离的比叫做比例尺。

  按比例分配:把几个数按一定比例分成几份,叫按比例分配。

  25.综合行程

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

  基本公式:路程=速度时间;路程时间=速度;路程速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)顺水时间

  逆水行程=(船速-水速)逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)2

  水 速=(顺水速度-逆水速度)2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  26.工程问题

  基本公式:

  ①工作总量=工作效率工作时间

  ②工作效率=工作总量工作时间

  ③工作时间=工作总量工作效率

  基本思路:

  ①假设工作总量为1(和总工作量无关);

  ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

  经验简评:合久必分,分久必合。

  27.逻辑推理

  基本方法简介:

  ①条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

  ②条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

  ③条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示是,有等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

  ④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

  ⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

  28.几何面积

  基本思路:

  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

  常用方法:

  1. 连辅助线方法

  2. 利用等底等高的两个三角形面积相等。

  3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

  4. 利用特殊规律

  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

  ②梯形对角线连线后,两腰部分面积相等。

  ③圆的面积占外接正方形面积的78.5%。

  29.立体图形

  名称 图形 特征 表面积 体积

  长

  方

  体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh

  =Sh

  正

  方

  体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3

  圆

  柱

  体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底

  S侧=Ch V=Sh

  圆

  锥

  体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底

  S侧=rl V=Sh

  球

  体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3

  30.时钟问题快慢表问题

  基本思路:

  1、 按照行程问题中的思维方法解题;

  2、 不同的表当成速度不同的运动物体;

  3、 路程的单位是分格(表一周为60分格);

  4、 时间是标准表所经过的时间;

小升初数学知识点7

  1整数加法:把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  加数+加数=和 一个加数=和-另一个加数

  2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。

  3整数乘法:求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的.和叫做积。

  在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

  一个因数 一个因数 =积 一个因数=积另一个因数

  4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。

  在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数除数=商 除数=被除数商 被除数=商除数

小升初数学知识点8

  平均数

  基本公式:①平均数=总数量÷总份数

  总数量=平均数×总份数

  总份数=总数量÷平均数

  ②平均数=基准数+每一个数与基准数差的和÷总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算。

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②

  经典例题:

  例1、一个学习小组在一次数学测验中,小红得100分,小明得98分,小兰得96分,小平得90分,平均每人多少分?

  解 (100+98+96+90)÷4=96(分)

  答:平均每人96分。

  【解题关键与提示】

  先求出总成绩和总人数,然后求出平均数。

  例2、 一辆汽车前2小时每小时行42千米,后3小时每小时行40千米,平均每小时行多少千米?

  解 (42+40)÷(2+3)

  =82÷5

  =16.4(千米)

  答:平均每小时行16.4千米。

  【解题关键与提示】

  先求出行的总路程和总时间,然后求出平均数。

  例3、某校少先队组织了4个采树种小组,采摘树种支援大西北的绿化。第一天采到15千克,第二天采到20千克,第三天采到19千克。(1)平均每天采到树种多少千克?(2)平均每组采到树种多少千克?(3)平均每组每天采到树种多少千克?

  解(1)(15+20+19)÷3=18(千克)

  (2)(15+20+19)÷4=13.5(千克)

  (3)(15+20+19)÷3÷4=4.5(千克)

  答:平均每天采到18干克树种,平均每组采到13.5千克树种,平均每组每天采到4.5千克树种。

  【解题关键与提示】

  平均的总数是共采到的树种数,始终不变;按什么“单位”平均,三个问题的`要求各不相同:问题(1)要求按“天数”平均;问题(2)要求按“组数”平均;问题(3)要求按“每组每天”平均。

  以上是为大家分享的小升初数学知识点平均数,希望能够切实的帮助到大家,同时希望大家能够在考试中取得优异的成绩!

小升初数学知识点9

  一、量的'计算单位及进率归类

  1.长度计量单位及进率:千米(公里)、米、分米、厘米、毫米

  1千米=1公里、1千米=1000米

  1米=10分米、1分米=10厘米、1厘米=10毫米

  2.面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷、1平方千米=1000000平方米

  1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米

  3.体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米、1立方分米=1000立方厘米

  1立方分米=1升、1立方厘米=1毫升

  4.质量单位及进率:吨、千克、公斤、克

  1吨=1000千克、1千克=1公斤、1千克=1000克

  5.时间单位及进率:世纪、年、月、日、小时、分、秒

  1世纪=100年、1年=12月、1天=24小时、1小时=60分、1分=60秒(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)。

  1.长度计量单位及进率:千米(公里)、米、分米、厘米、毫米

  1千米=1公里、1千米=1000米

  1米=10分米、1分米=10厘米、1厘米=10毫米

  2.面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷、1平方千米=1000000平方米

  1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米

  3.体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米、1立方分米=1000立方厘米

  1立方分米=1升、1立方厘米=1毫升

  4.质量单位及进率:吨、千克、公斤、克

  1吨=1000千克、1千克=1公斤、1千克=1000克

  5.时间单位及进率:世纪、年、月、日、小时、分、秒

小升初数学知识点10

  小升初数学所有知识点(重要)

  体积和表面积

  三角形的面积=底×高÷2。 S= a×h÷2

  正方形的面积=边长×边长S= a2

  长方形的面积=长×宽公式S= a×b

  平行四边形的面积=底×高S= a×h

  梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V = abh

  长方体(或正方体)的体积=底面积×高公式:V = abh

  正方体的体积=棱长×棱长×棱长V = a3

  圆的周长=直径×π L=πd=2πr

  圆的面积=半径×半径×π S=πr2

  圆柱的侧面积:圆柱的侧面积=底面的周长×高S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积=底面的周长×高+圆的面积×2

  S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积=底面积×高。 V=Sh

  圆锥的体积=1/3底面积×高。 V=1/3Sh

  单位换算

  长度单位:

  1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  面积单位:

  1平方千米=100公顷1公顷=10000平方米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1亩=666.666平方米。

  体积单位

  1立方米=1000立方分米1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1升=1立方分米=1000毫升1毫升=1立方厘米

  重量单位

  1吨=1000千克1千克= 1000克= 1公斤= 1市斤

  算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b = b + a

  3、乘法交换律:a × b = b × a

  4、乘法结合律:a × b × c = a ×(b × c)

  5、乘法分配律:a × b + a × c = a × b + c

  6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

  7、除法的性质:

  ①、在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  ②、O除以任何不是O的数都得O。

  ③、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的.末尾。

  8、有余数的除法:

  被除数=商×除数+余数

  9、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  代数:代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x =ab+c

  分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:

  同分母的分数相比较,分子大的大,分子小的小。

  异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:

  同分母的分数相加减,只把分子相加减,分母不变。

  异分母的分数相加减,先通分,然后再加减。

  倒数的概念:

  1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。

  2.1的倒数是1,0没有倒数。

  3、分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:

  1、分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变;

  2、分数的除法则:除以一个数(0除外)=乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  数量关系计算公式

  单价×数量=总价2、单产量×数量=总产量

  速度×时间=路程4、工效×时间=工作总量

  加数+加数=和一个加数=和-另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差

  因数×因数=积一个因数=积÷另一个因数

  被除数÷除数=商除数=被除数÷商被除数=商×除数

  比

  什么叫比:

  1、两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

  2、比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

  什么叫比例:

  1、表示两个比相等的式子叫做比例。如3:6=9:18

  2、比例的基本性质:在比例里,两外项之积等于两内项之积。

  解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

  反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

  百分数

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数)

  小数

  自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  纯小数:个位是0的小数。

  带小数:各位大于0的小数。

  循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

  不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

  无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……

  无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

  利润

  利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

  倍数与约数

  最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

  最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

  互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

  通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

  最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数

  1既不是质数也不是合数。,也不是合数。

  质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

  分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

  倍数特征:

  2的倍数的特征:个位是0,2,4,6,8。

  3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

  5的倍数的特征:个位是0,5。

  奇数与偶数

  偶数:个位是0,2,4,6,8的数。

  奇数:个位不是0,2,4,6,8的数。

  偶数±偶数=偶数奇数±奇数=奇数奇数±偶数=奇数

  偶数个偶数相加是偶数,奇数个奇数相加是奇数。

  偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数

  相临两个自然数之和为奇数,相临自然数之积为偶数。

  如果乘式中有一个数为偶数,那么乘积一定是偶数。

  奇数≠偶数

小升初数学知识点11

  几何面积基本思路:

  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

  常用方法:

  1.连辅助线方法

  2.利用等底等高的两个三角形面积相等。

  3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

  4.利用特殊规律

  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的'平方除以4等于等腰直角三角形的面积)

  ②梯形对角线连线后,两腰部分面积相等。

  ③圆的面积占外接正方形面积的78。5%。

  立体图形基本思路

  名称图形特征表面积体积

  长方体8个顶点;6个面;相对的面相等;12条棱;相对的棱相等;S=2(ab+ah+bh)V=abh=Sh

  正方体8个顶点;6个面;所有面相等;12条棱;所有棱相等;S=6a2V=a3

  圆柱体上下两底是平行且相等的圆;侧面展开后是长方形;S=S侧+2S底

  S侧=ChV=Sh

  圆锥体下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离;S=S侧+S底

  S侧=rlV=Sh

  球体圆心到圆周上任意一点的距离是球的半径。S=4r2V=r3

小升初数学知识点12

  数与代数

  百分数的应用

  (1)求一个数比另一个数多(少)百分之几的实际问题

  ①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量另一个数

  ②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?

  男生比女生多的人数 女生人数= 百分之几 (180- 160) 160 = 12.5%

  女生比男生少的人数 男生人数= 百分之几 (180- 160) 180 11.1%

  (2)纳税问题

  ①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,

  应纳税额 = 收入 税率

  ②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的'税率缴纳个人所得税,张强应该缴纳个人所得税多少元?

  (1400- 800)14% = 84(元)

  (3)利息问题

  ①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 利率 时间

  ②例题:叔叔今年存入银行10万元,定期二年,年利率4.50%,二年后到期,扣除利息税5%,得到的利息能买一台6000元的电脑吗?

  100000 4.5% 2 (1 -5%) = 8550(元)

  8550元 6000元 得到的利息能买一台6000元的电脑

  (4)有关折扣问题

  ①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 折数。

  ②例题:一种衣服原价每件50元,现在打九折出售,每件售价多少元?

  九折就是90%,5090%=500.9=45(元)

  例题:一种衣服现在打九折出售,现在售价是45元,每件的原价是多少元?

  九折就是90%,ⅹ90% = 45 ⅹ=50

  (5)列方程解稍复杂的百分数实际问题

  ①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答已知比一个数多(少)百分之几的数是多少,求这个数的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。

  ②例题:果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?

  解:设梨树有x棵,苹果树有20%x棵

  x + 20%x = 360 x = 300

  20%x = 300 20% = 60

  答:梨树有300棵,苹果树有60棵。

  例题:某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?

  解:设五月份用煤x吨

  x - 25%x = 60 x = 80

  答:五月份用煤80吨。

  以上是小升初数学重要知识点,读后您收获多少呢?

小升初数学知识点13

  何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的.50%。那么如何复习这四方面的内容呢?

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论在数论学习中学生往往容易犯如下几个错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  整除问题:

  (1)数的整除的特征和性质 (分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  这四个问题我们需要掌握到什么样的程度?

  近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点14

  数的整除

  1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

  2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

  3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

  4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的'数叫做偶数,不能被2整除的数叫做奇数。

  5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

  质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

  最小的质数是2,最小的合数是4

  1~20以内的质数有:2、3、5、7、11、13、17、19

  1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

  6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

  能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

  能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。

  7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

  8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。

  11.互质数:公约数只有1的两个数叫做互质数。

  12.两数之积等于最小公倍数和最大公约数的积。

小升初数学知识点15

  一、分数乘法

  (一)分数乘法的意义:

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  例如: 5表示求5个的和是多少?

  2、分数乘分数是求一个数的几分之几是多少。

  例如: 表示求的是多少?

  (二)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (三)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (四)、分数混合运算的运算顺序和整数的运算顺序相同。

  (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a b = b a

  乘法结合律: ( a b )c = a ( b c )

  乘法分配律: ( a + b )c = a c + b c

  二、分数乘法的解决问题

  (已知单位1的量(用乘法),求单位1的几分之几是多少)

  1、画线段图:

  (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

  2、找单位1: 在分率句中分率的前面; 或 占、是、比的后面

  3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。

  4、写数量关系式技巧:

  (1)的 相当于 占、是、比相当于 =

  (2)分率前是的: 单位1的量分率=分率对应量

  (3)分率前是多或少的意思: 单位1的`量(1分率)=分率对应量

  三、倒数

  1、倒数的意义: 乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0,(分母不能为0)

  4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

《小升初数学知识点15篇【优】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【小升初数学知识点】相关文章:

小升初的数学知识点04-11

小升初数学必考知识点03-29

小升初数学重要知识点04-04

小升初数学知识点05-20

【经典】小升初数学知识点05-21

(经典)小升初数学知识点05-28

小升初数学知识点总结03-05

小升初数学知识点(优秀)05-21

[优选]小升初数学知识点05-27

小升初数学知识点【荐】05-28

小升初数学知识点15篇【优】

  在我们上学期间,说到知识点,大家是不是都习惯性的重视?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在为没有系统的知识点而发愁吗?以下是小编帮大家整理的小升初数学知识点,希望能够帮助到大家。

小升初数学知识点15篇【优】

小升初数学知识点1

  一、小升初数学知识点:归一问题

  1、概念与类型

  归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题。

  2、归一问题有两种基本类型

  一种是正归一,也称为直进归一。如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;

  另一种是反归一,也称为返回归一。如:修路队6小时修路180千米,照这样修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量。

  3、解题方法

  归一法

  解题时需先根据已知条件,求出一个单位量的数值,再根据题中的条件和问题求出结果。

  基本关系式有

  每份的.工作量(单一量)=总工作量÷份数

  总工作量=每份的工作量(单一量)×份数(正归一)

  份数=总工作量÷每份的工作量(单一量)(反归一)

  倍比法

  有些归一问题可采取同类数量之间进行倍数比较的方法解答,这种方法叫做倍比法。

  在整数范围内,用倍比法解除不尽时,只能用归一法解;用归一法解除不尽时,只能用倍比法解;也有的两种方法都可以用。有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

  二、小升初数学知识点:还原问题

  1、还原问题的定义

  已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题。

  还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.

  2、解还原问题的方法

  核心:倒推法

  注意:两个相反,一是运算次序与原来相反;二是运算方法与原来相反.

  口诀:加减互逆,乘除互逆,要求原数,逆推新数.

小升初数学知识点2

  长度单位换算

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1米=100厘米

  1厘米=10毫米

  面积单位换算

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  体(容)积单位换算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  重量单位换算

  1吨=1000千克

  1千克=1000克

  1千克=1公斤

  人民币单位换算

  1元=10角

  1角=10分

  1元=100分

  时间单位换算

  1世纪=100年

  1年=12月

  大月(31天)有:135781012月

  小月(30天)的有:46911月

  平年2月28天,闰年2月29天

  平年全年365天,闰年全年366天

  1日=24小时

  1时=60分

  1分=60秒

  1时=3600秒

小升初数学知识点3

  一、分数除法

  1、分数除法的意义:

  乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:

  除以一个不为0的数,等于乘这个数的倒数。

  规律(分数除法比较大小时):

  (1)当除数大于1,商小于被除数;

  (2)当除数小于1(不等于0),商大于被除数;

  (3)当除数等于1,商等于被除数。

  [ ]叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

  二、分数除法解决问题

  (未知单位1的量(用除法): 已知单位1的几分之几是多少,求单位1的量。 )

  1、数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是的: 单位1的量分率=分率对应量

  (2)分率前是多或少的意思: 单位1的量(1分率)=分率对应量

  2、解法:(建议:最好用方程解答)

  (1)方程: 根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 分率对应量对应分率 = 单位1的量

  3、求一个数是另一个数的几分之几:就 一个数另一个数

  4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位1的量 或:

  ① 求多几分之几:大数小数 1

  ② 求少几分之几: 1 - 小数大数

  三、比和比的应用

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示)

  ∶ ∶ ∶ ∶

  前项 比号 后项 比值

  3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比前 项比号:后 项比值

  除 法被除数除号除 数商

  分 数分 子分数线分 母分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的`基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  (2)用求比值的方法。注意: 最后结果要写成比的形式。

  如: 15∶10 = 1510 = 3/2 = 3∶2

  5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  如: 已知两个量之比为,则设这两个量分别为。

  路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

小升初数学知识点4

  1、循环小数的计算

  两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。

  从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。

  2、分数一元一次方程的求解

  其实很简单,只要孩子能够把过程规范好!

  1.去分母(同乘分母的最小公倍数)

  2.去括号(运用乘法分配律,注意减号后面的括号去掉时要变号!!30%以上的孩子至今未解决这个问题!!!)

  3.移项并合并同类项,保证字母在一边,数字在另一边。(注意不要跳步,以免孩子粗心出错。)

  4.化系数为1,求出解来。(记得解一定把x写作左边,得数写在右边)

  3、乘法分配律和提取公因数

  知识点都会,就是易错。

  要想提好公因数,一定要学会动笔前先观察算式,以下是考察提取公因数的常用方式:

  1.最简单的障眼法是把一个数写成不同的形式,比如可以写成小数、假分数、带分数、百分数,从而隐藏了公因数,这就需要我们熟练这些形式之间的互化,还有一颗火眼金睛;

  2.利用积不变的方式发掘公因数,比如某个数乘以37加上某个数乘以74,看似没有公因数,但是74等于2乘以37,因此某个数乘以74可以变成这个数的2倍再乘以37,从而出现了37这个公因数;

  3.最隐蔽的一种,就是乘除互化,乘以1.2和除以5/6本质上其实是一样的,通过把除法化为乘法后即可出现公因数,因此拿到一个类似的问题,先把每一项都转化为乘法,再去寻找公因数会比较高效。

  4、连锁约分和整体约分

  约分是分数乘除法特有的巧算技巧点。能够把很多复杂不好计算的部分通过约分约去,从而达到简化计算的目的。要理解透这两种约分,只需把它们的起源找到就很简单了。

  5、换元

  换元体现了“整体打包”这种经典的数学思想。这种用抽象的未知数来代表一个复杂的`数或算式的思维方式对习惯了具体数的四则运算的小学生来说还是很有挑战的。

  6、裂项

  总的来讲,它的难度很高。不过由于大多数小升初裂项题都很简单,因此有的孩子会选择图方便去死记住规律。这样其实非常危险,第一,现在雅系的小升初考试裂项难度远超普通题,只会做最简单的裂项是远远不够的;第二,公式中有一些细节容易被记错,如果没有理解的辅助,在真实考试的紧张状态下很容易出错。

小升初数学知识点5

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的'坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点6

  1.和差倍问题

  和差问题 和倍问题 差倍问题

  已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数

  公式适用范围 已知两个数的和,差,倍数关系

  公式 ①(和-差)2=较小数

  较小数+差=较大数

  和-较小数=较大数

  ②(和+差)2=较大数

  较大数-差=较小数

  和-较大数=较小数

  和(倍数+1)=小数

  小数倍数=大数

  和-小数=大数

  差(倍数-1)=小数

  小数倍数=大数

  小数+差=大数

  关键问题 求出同一条件下的

  和与差 和与倍数 差与倍数

  2.年龄问题的三个基本特征:

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的;

  3.归一问题的基本特点:问题中有一个不变的量,一般是那个单一量,题目一般用照这样的速度等词语来表示。

  关键问题:根据题目中的条件确定并求出单一量;

  4.植树问题

  基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树

  基本公式 棵数=段数+1

  棵距段数=总长 棵数=段数-1

  棵距段数=总长 棵数=段数

  棵距段数=总长

  关键问题 确定所属类型,从而确定棵数与段数的关系

  5.鸡兔同笼问题

  基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

  基本思路:

  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

  ②假设后,发生了和题目条件不同的差,找出这个差是多少;

  ③每个事物造成的差是固定的,从而找出出现这个差的原因;

  ④再根据这两个差作适当的调整,消去出现的差。

  基本公式:

  ①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)

  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)

  关键问题:找出总量的差与单位量的差。

  6.盈亏问题

  基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

  基本题型:

  ①一次有余数,另一次不足;

  基本公式:总份数=(余数+不足数)两次每份数的差

  ②当两次都有余数;

  基本公式:总份数=(较大余数一较小余数)两次每份数的差

  ③当两次都不足;

  基本公式:总份数=(较大不足数一较小不足数)两次每份数的差

  基本特点:对象总量和总的组数是不变的。

  关键问题:确定对象总量和总的组数。

  7.牛吃草问题

  基本思路:假设每头牛吃草的速度为1份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

  基本特点:原草量和新草生长速度是不变的;

  关键问题:确定两个不变的量。

  基本公式:

  生长量=(较长时间长时间牛头数-较短时间短时间牛头数)(长时间-短时间);

  总草量=较长时间长时间牛头数-较长时间生长量;

  8.周期循环与数表规律

  周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

  周期:我们把连续两次出现所经过的时间叫周期。

  关键问题:确定循环周期。

  闰 年:一年有366天;

  ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

  平 年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  9.平均数

  基本公式:①平均数=总数量总份数

  总数量=平均数总份数

  总份数=总数量平均数

  ②平均数=基准数+每一个数与基准数差的和总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算.

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差; 再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

  10.抽屉原理

  抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

  例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

  ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

  观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

  抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:

  ①k=[n/m ]+1个物体:当n不能被m整除时。

  ②k=n/m个物体:当n能被m整除时。

  理解知识点:[X]表示不超过X的最大整数。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

  11.定义新运算

  基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

  基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

  关键问题:正确理解定义的运算符号的意义。

  注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

  ②每个新定义的运算符号只能在本题中使用。

  12.数列求和

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示.

  基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an = a1+(n-1)d;

  通项=首项+(项数一1) 公差;

  数列和公式:sn,= (a1+ an)n

  数列和=(首项+末项)项数

  项数公式:n= (an+ a1)

  项数=(末项-首项)公差+1;

  公差公式:d =(an-a1))(n-1);

  公差=(末项-首项)(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式;

  13.二进制及其应用

  十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。

  =An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7++A3102+A2101+A1100

  注意:N0=1;N1=N(其中N是任意自然数)

  二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

  (2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7

  ++A322+A221+A120

  注意:An不是0就是1。

  十进制化成二进制:

  ①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

  ②先找出不大于该数的2的.n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

  14.加法乘法原理和几何计数

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

  关键问题:确定工作的分类方法。

  基本特征:每一种方法都可完成任务。

  乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1m2....... mn种不同的方法。

  关键问题:确定工作的完成步骤。

  基本特征:每一步只能完成任务的一部分。

  直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

  直线特点:没有端点,没有长度。

  线段:直线上任意两点间的距离。这两点叫端点。

  线段特点:有两个端点,有长度。

  射线:把直线的一端无限延长。

  射线特点:只有一个端点;没有长度。

  ①数线段规律:总数=1+2+3++(点数一1);

  ②数角规律=1+2+3++(射线数一1);

  ③数长方形规律:个数=长的线段数宽的线段数:

  ④数长方形规律:个数=11+22+33++行数列数

  15.质数与合数

  质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

  合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

  质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

  分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

  分解质因数的标准表示形式:N=,其中a1、a2、a3an都是合数N的质因数,且a1 p

  求约数个数的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)

  互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

  16.约数与倍数

  约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

  公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  最大公约数的性质:

  1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

  2、 几个数的最大公约数都是这几个数的约数。

  3、 几个数的公约数,都是这几个数的最大公约数的约数。

  4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

  例如:12的约数有1、2、3、4、6、12;

  18的约数有:1、2、3、6、9、18;

  那么12和18的公约数有:1、2、3、6;

  那么12和18最大的公约数是:6,记作(12,18)=6;

  求最大公约数基本方法:

  1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

  2、短除法:先找公有的约数,然后相乘。

  3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

  公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  12的倍数有:12、24、36、48

  18的倍数有:18、36、54、72

  那么12和18的公倍数有:36、72、108

  那么12和18最小的公倍数是36,记作[12,18]=36;

  最小公倍数的性质:

  1、两个数的任意公倍数都是它们最小公倍数的倍数。

  2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

  求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

  17.数的整除

  一、基本概念和符号:

  1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  2、常用符号:整除符号|,不能整除符号因为符号∵,所以的符号

  二、整除判断方法:

  1. 能被2、5整除:末位上的数字能被2、5整除。

  2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4. 能被3、9整除:各个数位上数字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6. 能被11整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7. 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

  2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  18.余数及其应用

  基本概念:对任意自然数a、b、q、r,如果使得ab=qr,且0

  余数的性质:

  ①余数小于除数。

  ②若a、b除以c的余数相同,则c|a-b或c|b-a。

  ③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

  ④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

  19.余数、同余与周期

  一、同余的定义:

  ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

  ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作ab(mod m),读作a同余于b模m。

  二、同余的性质:

  ①自身性:aa(mod m);

  ②对称性:若ab(mod m),则ba(mod m);

  ③传递性:若ab(mod m),bc(mod m),则a c(mod m);

  ④和差性:若ab(mod m),cd(mod m),则a+cb+d(mod m),a-cb-d(mod m);

  ⑤相乘性:若a b(mod m),cd(mod m),则ac bd(mod m);

  ⑥乘方性:若ab(mod m),则anbn(mod m);

  ⑦同倍性:若a b(mod m),整数c,则ac bc(mod m

  三、关于乘方的预备知识:

  ①若A=ab,则MA=Mab=(Ma)b

  ②若B=c+d则MB=Mc+d=McMd

  四、被3、9、11除后的余数特征:

  ①一个自然数M,n表示M的各个数位上数字的和,则Mn(mod 9)或(mod 3);

  ②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则MY-X或M11-(X-Y)(mod 11);

  五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-11(mod p)。

  20.分数与百分数的应用

  基本概念与性质:

  分数:把单位1平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位1平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  21.分数大小的比较

  基本方法:

  ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

  ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

  ③基准数法:确定一个标准,使所有的分数都和它进行比较。

  ④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

  ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

  ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

  ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

  ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

  ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

  ⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

  22.分数拆分

  一、 将一个分数单位分解成两个分数之和的公式:

  ① =+;

  ②=+(d为自然数);

  23.完全平方数

  完全平方数特征:

  1. 末位数字只能是:0、1、4、5、6、9;反之不成立。

  2. 除以3余0或余1;反之不成立。

  3. 除以4余0或余1;反之不成立。

  4. 约数个数为奇数;反之成立。

  5. 奇数的平方的十位数字为偶数;反之不成立。

  6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。

  7. 两个相临整数的平方之间不可能再有平方数。

  平方差公式:X2-Y2=(X-Y)(X+Y)

  完全平方和公式:(X+Y)2=X2+2XY+Y2

  完全平方差公式:(X-Y)2=X2-2XY+Y2

  24.比和比例

  比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

  比值:比的前项除以后项的商,叫做比值。

  比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

  比例:表示两个比相等的式子叫做比例。a:b=c:d或

  比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

  正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

  反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

  比例尺:图上距离与实际距离的比叫做比例尺。

  按比例分配:把几个数按一定比例分成几份,叫按比例分配。

  25.综合行程

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

  基本公式:路程=速度时间;路程时间=速度;路程速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)顺水时间

  逆水行程=(船速-水速)逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)2

  水 速=(顺水速度-逆水速度)2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  26.工程问题

  基本公式:

  ①工作总量=工作效率工作时间

  ②工作效率=工作总量工作时间

  ③工作时间=工作总量工作效率

  基本思路:

  ①假设工作总量为1(和总工作量无关);

  ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

  经验简评:合久必分,分久必合。

  27.逻辑推理

  基本方法简介:

  ①条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

  ②条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

  ③条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示是,有等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

  ④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

  ⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

  28.几何面积

  基本思路:

  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

  常用方法:

  1. 连辅助线方法

  2. 利用等底等高的两个三角形面积相等。

  3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

  4. 利用特殊规律

  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

  ②梯形对角线连线后,两腰部分面积相等。

  ③圆的面积占外接正方形面积的78.5%。

  29.立体图形

  名称 图形 特征 表面积 体积

  长

  方

  体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh

  =Sh

  正

  方

  体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3

  圆

  柱

  体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底

  S侧=Ch V=Sh

  圆

  锥

  体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底

  S侧=rl V=Sh

  球

  体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3

  30.时钟问题快慢表问题

  基本思路:

  1、 按照行程问题中的思维方法解题;

  2、 不同的表当成速度不同的运动物体;

  3、 路程的单位是分格(表一周为60分格);

  4、 时间是标准表所经过的时间;

小升初数学知识点7

  1整数加法:把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  加数+加数=和 一个加数=和-另一个加数

  2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。

  3整数乘法:求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的.和叫做积。

  在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

  一个因数 一个因数 =积 一个因数=积另一个因数

  4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。

  在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数除数=商 除数=被除数商 被除数=商除数

小升初数学知识点8

  平均数

  基本公式:①平均数=总数量÷总份数

  总数量=平均数×总份数

  总份数=总数量÷平均数

  ②平均数=基准数+每一个数与基准数差的和÷总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算。

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②

  经典例题:

  例1、一个学习小组在一次数学测验中,小红得100分,小明得98分,小兰得96分,小平得90分,平均每人多少分?

  解 (100+98+96+90)÷4=96(分)

  答:平均每人96分。

  【解题关键与提示】

  先求出总成绩和总人数,然后求出平均数。

  例2、 一辆汽车前2小时每小时行42千米,后3小时每小时行40千米,平均每小时行多少千米?

  解 (42+40)÷(2+3)

  =82÷5

  =16.4(千米)

  答:平均每小时行16.4千米。

  【解题关键与提示】

  先求出行的总路程和总时间,然后求出平均数。

  例3、某校少先队组织了4个采树种小组,采摘树种支援大西北的绿化。第一天采到15千克,第二天采到20千克,第三天采到19千克。(1)平均每天采到树种多少千克?(2)平均每组采到树种多少千克?(3)平均每组每天采到树种多少千克?

  解(1)(15+20+19)÷3=18(千克)

  (2)(15+20+19)÷4=13.5(千克)

  (3)(15+20+19)÷3÷4=4.5(千克)

  答:平均每天采到18干克树种,平均每组采到13.5千克树种,平均每组每天采到4.5千克树种。

  【解题关键与提示】

  平均的总数是共采到的树种数,始终不变;按什么“单位”平均,三个问题的`要求各不相同:问题(1)要求按“天数”平均;问题(2)要求按“组数”平均;问题(3)要求按“每组每天”平均。

  以上是为大家分享的小升初数学知识点平均数,希望能够切实的帮助到大家,同时希望大家能够在考试中取得优异的成绩!

小升初数学知识点9

  一、量的'计算单位及进率归类

  1.长度计量单位及进率:千米(公里)、米、分米、厘米、毫米

  1千米=1公里、1千米=1000米

  1米=10分米、1分米=10厘米、1厘米=10毫米

  2.面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷、1平方千米=1000000平方米

  1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米

  3.体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米、1立方分米=1000立方厘米

  1立方分米=1升、1立方厘米=1毫升

  4.质量单位及进率:吨、千克、公斤、克

  1吨=1000千克、1千克=1公斤、1千克=1000克

  5.时间单位及进率:世纪、年、月、日、小时、分、秒

  1世纪=100年、1年=12月、1天=24小时、1小时=60分、1分=60秒(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)。

  1.长度计量单位及进率:千米(公里)、米、分米、厘米、毫米

  1千米=1公里、1千米=1000米

  1米=10分米、1分米=10厘米、1厘米=10毫米

  2.面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷、1平方千米=1000000平方米

  1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米

  3.体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米、1立方分米=1000立方厘米

  1立方分米=1升、1立方厘米=1毫升

  4.质量单位及进率:吨、千克、公斤、克

  1吨=1000千克、1千克=1公斤、1千克=1000克

  5.时间单位及进率:世纪、年、月、日、小时、分、秒

小升初数学知识点10

  小升初数学所有知识点(重要)

  体积和表面积

  三角形的面积=底×高÷2。 S= a×h÷2

  正方形的面积=边长×边长S= a2

  长方形的面积=长×宽公式S= a×b

  平行四边形的面积=底×高S= a×h

  梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V = abh

  长方体(或正方体)的体积=底面积×高公式:V = abh

  正方体的体积=棱长×棱长×棱长V = a3

  圆的周长=直径×π L=πd=2πr

  圆的面积=半径×半径×π S=πr2

  圆柱的侧面积:圆柱的侧面积=底面的周长×高S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积=底面的周长×高+圆的面积×2

  S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积=底面积×高。 V=Sh

  圆锥的体积=1/3底面积×高。 V=1/3Sh

  单位换算

  长度单位:

  1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  面积单位:

  1平方千米=100公顷1公顷=10000平方米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1亩=666.666平方米。

  体积单位

  1立方米=1000立方分米1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1升=1立方分米=1000毫升1毫升=1立方厘米

  重量单位

  1吨=1000千克1千克= 1000克= 1公斤= 1市斤

  算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b = b + a

  3、乘法交换律:a × b = b × a

  4、乘法结合律:a × b × c = a ×(b × c)

  5、乘法分配律:a × b + a × c = a × b + c

  6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

  7、除法的性质:

  ①、在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  ②、O除以任何不是O的数都得O。

  ③、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的.末尾。

  8、有余数的除法:

  被除数=商×除数+余数

  9、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  代数:代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x =ab+c

  分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:

  同分母的分数相比较,分子大的大,分子小的小。

  异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:

  同分母的分数相加减,只把分子相加减,分母不变。

  异分母的分数相加减,先通分,然后再加减。

  倒数的概念:

  1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。

  2.1的倒数是1,0没有倒数。

  3、分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:

  1、分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变;

  2、分数的除法则:除以一个数(0除外)=乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  数量关系计算公式

  单价×数量=总价2、单产量×数量=总产量

  速度×时间=路程4、工效×时间=工作总量

  加数+加数=和一个加数=和-另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差

  因数×因数=积一个因数=积÷另一个因数

  被除数÷除数=商除数=被除数÷商被除数=商×除数

  比

  什么叫比:

  1、两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

  2、比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

  什么叫比例:

  1、表示两个比相等的式子叫做比例。如3:6=9:18

  2、比例的基本性质:在比例里,两外项之积等于两内项之积。

  解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

  反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

  百分数

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数)

  小数

  自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  纯小数:个位是0的小数。

  带小数:各位大于0的小数。

  循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

  不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

  无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……

  无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

  利润

  利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

  倍数与约数

  最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

  最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

  互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

  通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

  最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数

  1既不是质数也不是合数。,也不是合数。

  质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

  分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

  倍数特征:

  2的倍数的特征:个位是0,2,4,6,8。

  3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

  5的倍数的特征:个位是0,5。

  奇数与偶数

  偶数:个位是0,2,4,6,8的数。

  奇数:个位不是0,2,4,6,8的数。

  偶数±偶数=偶数奇数±奇数=奇数奇数±偶数=奇数

  偶数个偶数相加是偶数,奇数个奇数相加是奇数。

  偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数

  相临两个自然数之和为奇数,相临自然数之积为偶数。

  如果乘式中有一个数为偶数,那么乘积一定是偶数。

  奇数≠偶数

小升初数学知识点11

  几何面积基本思路:

  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

  常用方法:

  1.连辅助线方法

  2.利用等底等高的两个三角形面积相等。

  3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

  4.利用特殊规律

  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的'平方除以4等于等腰直角三角形的面积)

  ②梯形对角线连线后,两腰部分面积相等。

  ③圆的面积占外接正方形面积的78。5%。

  立体图形基本思路

  名称图形特征表面积体积

  长方体8个顶点;6个面;相对的面相等;12条棱;相对的棱相等;S=2(ab+ah+bh)V=abh=Sh

  正方体8个顶点;6个面;所有面相等;12条棱;所有棱相等;S=6a2V=a3

  圆柱体上下两底是平行且相等的圆;侧面展开后是长方形;S=S侧+2S底

  S侧=ChV=Sh

  圆锥体下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离;S=S侧+S底

  S侧=rlV=Sh

  球体圆心到圆周上任意一点的距离是球的半径。S=4r2V=r3

小升初数学知识点12

  数与代数

  百分数的应用

  (1)求一个数比另一个数多(少)百分之几的实际问题

  ①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量另一个数

  ②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?

  男生比女生多的人数 女生人数= 百分之几 (180- 160) 160 = 12.5%

  女生比男生少的人数 男生人数= 百分之几 (180- 160) 180 11.1%

  (2)纳税问题

  ①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,

  应纳税额 = 收入 税率

  ②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的'税率缴纳个人所得税,张强应该缴纳个人所得税多少元?

  (1400- 800)14% = 84(元)

  (3)利息问题

  ①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 利率 时间

  ②例题:叔叔今年存入银行10万元,定期二年,年利率4.50%,二年后到期,扣除利息税5%,得到的利息能买一台6000元的电脑吗?

  100000 4.5% 2 (1 -5%) = 8550(元)

  8550元 6000元 得到的利息能买一台6000元的电脑

  (4)有关折扣问题

  ①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 折数。

  ②例题:一种衣服原价每件50元,现在打九折出售,每件售价多少元?

  九折就是90%,5090%=500.9=45(元)

  例题:一种衣服现在打九折出售,现在售价是45元,每件的原价是多少元?

  九折就是90%,ⅹ90% = 45 ⅹ=50

  (5)列方程解稍复杂的百分数实际问题

  ①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答已知比一个数多(少)百分之几的数是多少,求这个数的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。

  ②例题:果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?

  解:设梨树有x棵,苹果树有20%x棵

  x + 20%x = 360 x = 300

  20%x = 300 20% = 60

  答:梨树有300棵,苹果树有60棵。

  例题:某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?

  解:设五月份用煤x吨

  x - 25%x = 60 x = 80

  答:五月份用煤80吨。

  以上是小升初数学重要知识点,读后您收获多少呢?

小升初数学知识点13

  何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的.50%。那么如何复习这四方面的内容呢?

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论在数论学习中学生往往容易犯如下几个错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  整除问题:

  (1)数的整除的特征和性质 (分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  这四个问题我们需要掌握到什么样的程度?

  近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点14

  数的整除

  1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

  2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

  3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

  4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的'数叫做偶数,不能被2整除的数叫做奇数。

  5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

  质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

  最小的质数是2,最小的合数是4

  1~20以内的质数有:2、3、5、7、11、13、17、19

  1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

  6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

  能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

  能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。

  7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

  8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。

  11.互质数:公约数只有1的两个数叫做互质数。

  12.两数之积等于最小公倍数和最大公约数的积。

小升初数学知识点15

  一、分数乘法

  (一)分数乘法的意义:

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  例如: 5表示求5个的和是多少?

  2、分数乘分数是求一个数的几分之几是多少。

  例如: 表示求的是多少?

  (二)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (三)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (四)、分数混合运算的运算顺序和整数的运算顺序相同。

  (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a b = b a

  乘法结合律: ( a b )c = a ( b c )

  乘法分配律: ( a + b )c = a c + b c

  二、分数乘法的解决问题

  (已知单位1的量(用乘法),求单位1的几分之几是多少)

  1、画线段图:

  (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

  2、找单位1: 在分率句中分率的前面; 或 占、是、比的后面

  3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。

  4、写数量关系式技巧:

  (1)的 相当于 占、是、比相当于 =

  (2)分率前是的: 单位1的量分率=分率对应量

  (3)分率前是多或少的意思: 单位1的`量(1分率)=分率对应量

  三、倒数

  1、倒数的意义: 乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0,(分母不能为0)

  4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。