当前位置: 聚优范文网>儿童学堂>少儿数学>小升初数学知识点

小升初数学知识点

时间:2024-05-29 07:01:29 少儿数学 我要投稿

小升初数学知识点15篇【热】

  上学期间,相信大家一定都接触过知识点吧!知识点就是学习的重点。掌握知识点是我们提高成绩的关键!下面是小编精心整理的小升初数学知识点,仅供参考,大家一起来看看吧。

小升初数学知识点15篇【热】

小升初数学知识点1

  一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

  二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

  1、被除数除数=被除数除数的倒数。例 3= = 3 =3 =5

  2、除法转化成乘法时,被除数一定不能变,变成,除数变成它的倒数。

  3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

  4、被除数与商的变化规律:

  ①除以大于1的数,商小于被除数:ab=c 当b1时,c我们精心为大家准备的小升初数学分数除法知识点,希望大家合理的利用!更多小升初复习资料及相关资讯,尽在数学网,请大家及时关注!

  ②除以小于1的数,商大于被除数:ab=c 当b1时,c0 b0)

  ③除以等于1的数,商等于被除数:ab=c 当b=1时,c=a

  三、分数除法混合运算

  1、混合运算用梯等式计算,等号写在第一个数字的左下角。

  2、运算顺序:

  ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

  ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

  注:(ab)c=acbc

  四、比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  注:连比如:3:4:5读作:3比4比5

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20= =1220= =0.6 12∶20读作:12比20

  注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变3、化简比:化简之后结果还是一个比,不是一个数。

  (1)、 用比的前项和后项同时除以它们的最大公约数。

  (2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的.形式。

  (3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

  4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  5、比和除法、分数的区别:

  除法 被除数 除号() 除数(不能为0) 商不变性质 除法是一种运算

  分数 分子 分数线() 分母(不能为0) 分数的基本性质 分数是一个数

  比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

  附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

小升初数学知识点2

  1、自然数a除以自然数b,商是10,那么a和b的最大公约数是( )。

  A、a B、b C、10

  2、一个三角形,经过它的一个顶点画一条线段把它分成两个三角形,其中一个三角形的内角和是( )。

  A、 180 B、90 C、不确定

  3、从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是( )。

  A、2:3 B、3:2 C、2:5

  4、小升初数学知识点复习:选择题练习题:用3根都是12分米长的铁丝围成长方形、正方形和圆形,则围成的( )面积最大。

  A、长方形 B、正方形 C、圆形

  5、在除法算式mn=ab中,(n0),下面式子正确的是( )。

  A、an B、na C、nb

  6、过平行四边形的一个顶点向对边可以作( )条高。

  A、1 B、2 C、无数

  7、用三根同样长的铅丝分别围成圆、正方形和长方形,( )的面积最小。

  A、圆 B、正方形 C、长方形

  8、甲数与乙数的比值为0.4,乙数与甲数的比值为( )

  A.0.4 B.2.5 C. 2/5

  9、加工一批零件,经检验有100个合格,不合格的.有25个,这批零件的合格率是( )

  A、75% B、80% C、100%

  10、小数点右边第三位的计数单位是( )

  A、百分位 B、千分位 C、0.01 D、0.001

  11、等底等高的圆柱体比圆锥体体积( )

  A、大 B、大2倍 C、小

  12、如果4X=3Y,那么X与Y( )

  A、成正比例 B、成反比例 C、不成比例

  13、0.70.3如果商是2那么余数是( )

  A、1 B、0.1 C、0.01 D、10

  14、做一批零件,如果每人的工效一定,那么工人的人数和用的时间( )

  A.成正比例 B.成反比例 C.不成比例

  15、两根同样长的绳子,一根剪去3/7,另一根剪去3/7米,第( )根剪去的长一些。

  A、第一根长 B、第二根长 C、一样长 D、无法判断

  16、一根绳子,剪成两段,第一段长3/7米,第二段占全长的3/7,第( )段长一些。

  A、第一段长 B、第二段长 C、一样长 D、无法判断

小升初数学知识点3

  1、十几乘十几:

  口诀:头乘头,尾加尾,尾乘尾。

  例:12×14=?

  解:1×1=1

  2+4=6

  2×4=8

  12×14=168

  注:个位相乘,不够两位数要用0占位。

  2、头相同,尾互补(尾相加等于10):

  口诀:一个头加1后,头乘头,尾乘尾。

  例:23×27=?

  解:2+1=3

  2×3=6

  3×7=21

  23×27=621

  注:个位相乘,不够两位数要用0占位。

  3、第一个乘数互补,另一个乘数数字相同:

  口诀:一个头加1后,头乘头,尾乘尾。

  例:37×44=?

  解:3+1=4

  4×4=16

  7×4=28

  37×44=1628

  注:个位相乘,不够两位数要用0占位。

  4、几十一乘几十一:

  口诀:头乘头,头加头,尾乘尾。

  例:21×41=?

  解:2×4=8

  2+4=6

  1×1=1

  21×41=861

  5、11乘任意数:

  口诀:首尾不动下落,中间之和下拉。

  例:11×23125=?

  解:2+3=5

  3+1=4

  1+2=3

  2+5=7

  2和5分别在首尾

  11×23125=254375

  注:和满十要进一。

  6、十几乘任意数:

  口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,

  再向下落。

  例:13×326=?

  解:13个位是3

  3×3+2=11

  3×2+6=12

  3×6=18

  13×326=4238

  注:和满十要进一。

小升初数学知识点4

  1、 半圆的周长和圆的周长的一半有区别。

  2、 0.52÷0.17商是3,余数不是1而是0.01

  3、 在求总人数、总只数、总棵数这类应用题时,结果不可能是分数和小数。

  4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  5、 无盖的水桶,水池,金鱼缸,水槽等,求表面积时一定要减少一个底面积。

  6、 求大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。

  7、 求××率或百分之几的列式中,最后必须“×100﹪”。

  8、 大数的读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  9、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  10、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多孩子直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的`4000000面积单位。

  11、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  12、比的问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  13、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  14、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  15、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多孩子没有看到kg与g的单位不一致,直接给出了75的错误答案。(马上点标题下“小升初”关注可获得更多有态度的智慧文章,每天更新哟!)

  16、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  17、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  18、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运

  算、运算顺序以及提取公因数等计算基本功的考察。

  19、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为a米,则平均速度为:(a×2)÷(a÷1+a÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

小升初数学知识点5

  一、分数乘法

  (一)分数乘法的意义:

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  例如: 5表示求5个的和是多少?

  2、分数乘分数是求一个数的几分之几是多少。

  例如: 表示求的是多少?

  (二)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (三)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (四)、分数混合运算的运算顺序和整数的运算顺序相同。

  (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a b = b a

  乘法结合律: ( a b )c = a ( b c )

  乘法分配律: ( a + b )c = a c + b c

  二、分数乘法的解决问题

  (已知单位1的量(用乘法),求单位1的几分之几是多少)

  1、画线段图:

  (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

  2、找单位1: 在分率句中分率的前面; 或 占、是、比的后面

  3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。

  4、写数量关系式技巧:

  (1)的 相当于 占、是、比相当于 =

  (2)分率前是的: 单位1的量分率=分率对应量

  (3)分率前是多或少的意思: 单位1的`量(1分率)=分率对应量

  三、倒数

  1、倒数的意义: 乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0,(分母不能为0)

  4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

小升初数学知识点6

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的'列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点7

  专题一:计算

  我一直强调计算,扎实的算功是学好数学的必要条件。聪明在于勤奋,知识在于积累。积累一些常见数是必要的。如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分数,小数,百分数,比的互化要脱口而出。100以内的质数要信手拈来。1-30的平方,1-10的立方的结果要能提笔就写。对于整除的判定仅仅积累2,3,5的是不够的。9的整除判定和3的方法是一样的。还有就是2和5的n次方整除的判定只要看末n位。如4和25的整除都是看末2位,末2位能被4或25整除则这个数可以被4或25整除。8和125就看末3位。7,11,13的整除判定就是割开三位。前面部分减去末三位就可以了如果能整除7或11或13,这个数就是7或11或13的倍数。这其实是判定1001的方法。此外还有一种方法是割个位法,望同学们至少掌握20以内整除的判定方法。

  接下来讲下数论的积累。1搞清楚什么是完全平方数,完全平方数个位只能是0,1,4,5,6,9.奇数的平方除以8余1,偶数的平方是4的倍数。要掌握如何求一个数的约数个数,所有约数的.和,小于这个数且和这个数互质数的个数如何求。如何估计一个数是否为质数。

  计算分为一般计算和技巧计算。到底用哪个呢?首先基本的运算法则必须很熟悉。不要被简便运算假象迷惑。这里重点说下技巧计算。首先要熟练乘法和除法的分配律,其次要熟练a-b-c=a-(b+c)a-(b-c)=a-b+c

  还有连除就是除以所有除数的积等。再者对于结合交换律都应该很熟悉。分配律有直接提公因数,和移动小数点或扩大缩小倍数来凑出公因数。甚至有时候要强行创造公因数。再单独算尾巴。

  分数的裂项:裂和与裂差 等差数列求和,平方差,配对,换元,拆项约分,等比定理的转化等都要很熟悉。还有就是放缩与估计都要熟练。在计算中到底运用小数还是分数要看情况。如果既有分数又有小数的题,如果不能化成有限小数的分数出现的话整个计算应该用分数。当小数位数不超过2位且分数可以化为3位以内的小数时候可以用小数。计算时候学会凑整。看到25找4,看到125找8,看到2找5这些要形成条件反射。如7992乘以25

  很多孩子用竖式算很久,而实际上只要7992除以4再乘以100=(8000-8)除以4再乘以100=199800运用下除法分配律。这些简便的方法不要要求简便的时候才用,平时就要多用才熟能生巧。

  最后讲下公比是1/2的等比数列。很多孩子做1/2+1/4+...+1/64能很快1-1/64=63/64,但如果是1/4+1/8+1/16+..+1/256就不会了。实际上一样的裂项,为1/2-1/4+1/4-1/8+...+1/128-1/256=1/2-1/256=127/256.所以要学活总结裂项的几种形式。最后一般化。

  专题二:解方程

  解方程一般是运用等式性质,由于小学生没学过移项。所以稍复杂的方程容易错符号。如37-2x=39-3x

  解这样方程建议先把两边加3x 得到37+x=39 x=2 有的直接做容易搞成5x=2,所以做完后要检验。解含有分母的方程建议首先把分子的多项式加括号。然后左右两边每个加数或减数都乘以最小公倍数。注意凡是整体加上括号,最后用分配律和加减的简便运算方法去掉括号。这样不会错符号和漏乘调理也清楚。还有注意训练整体意识如解60(100-x)=72(97-x)就应该两边首先约去12计算更好。对于机构复杂出现重复部分的方程还要注意换元。平时还可以多解一些稍微复杂的百分数方程。

  专题三:分数,比,百分数应用题

  解决这类题关键在于搞清楚标准。明白1倍是什么,比的一份是什么。如60比---多1/5,60比----少1/5,60是---的1/5,---是60的1/5,---比60多1/5,----比60少1/5.这个准备题能全对说明标准吃透了否则还要在找标准量上加强训练。注意分数带单位表示具体数量,不带单位表示的实际上是倍数。只是同学们习惯看整数和小数倍不习惯看分数倍数。百分数就只能表示倍数,不能表示数量是不可以带单位的。如果用比解决问题就务必吃透1份是多少。其实分数应用题都可以转化为A是B的多少倍?已知1倍求多倍乘法,已知多倍求1倍除法。比如A比B多1/3,这时候标准是B A比1倍多1/3倍就是A是B的4/3倍。马上有A:B=4:3,对于应用题中分数和比的转化要清晰。很多题我们用分数抽象但用比很好理解。因为孩子熟悉整数,不喜欢分数这时事实。对于百分数应用题我们可以化为比转化为孩子喜欢的东西。其实很多有不变数量的题就是找到不变量,统一不变量对应份数,求出1份是多少,按比例分配这4步曲一般分数,百分数比的应用题就搞定了。对于浓度问题和商品利润问题我讲了十字交叉法。对于有些孩子可能难理解,考试在大题中也不适宜用。其实浓度问题列方程就从溶质入手就可以了。

小升初数学知识点8

  综合行程知识点:

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水 速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  经典例题:

  1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  解:

  根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

  根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

  可以得出马与羊的速度比是21x:20x=21:20

  根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

  2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

  答案720千米。

  由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

  3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。

  解:

  600÷12=50,表示哥哥、弟弟的速度差

  600÷4=150,表示哥哥、弟弟的速度和

  (50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

  (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

  600÷100=6分钟,表示跑的快者用的时间

  600/50=12分钟,表示跑得慢者用的时间

  4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  答案为53秒

  算式是(140+125)÷(22-17)=53秒

  可以这样理解:“快车从追上慢车的`车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

  5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

  答案为100米

  300÷(5-4.4)=500秒,表示追及时间

  5×500=2500米,表示甲追到乙时所行的路程

  2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

小升初数学知识点9

  何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%。那么如何复习这四方面的内容呢?

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的`技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论在数论学习中学生往往容易犯如下几个错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  整除问题:

  (1)数的整除的特征和性质 (分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  这四个问题我们需要掌握到什么样的程度?

  近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点10

  牛吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。

  下面是牛吃草问题的解题思路和解题方法、技巧供大家学习。

  一、解决此类问题,孩子必须弄个清楚几个不变量:

  1、草的增长速度不变 2、草场原有草的量不变 。草的总量由两部分组成,分别为:牧场原有草和新长出来的草。新长出来草的数量随着天数在变而变。

  因此孩子要弄清楚三个量的关系:

  第一:草的均匀变化速度(是均匀生长还是均匀减少)

  第二:求出原有草量

  第三:题意让我们求什么(时间、牛头数)。注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机

  二、解题基本思路

  1、先求出草的均匀变化速度,再求原有草量。

  2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的.差)”求出天数。

  3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

  4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数

  三、解题基本公式

  解决牛吃草问题常用到的四个基本公式分别为:

  1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)

  2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数

  3、吃的天数=原有草量÷(牛头数-草的生长速度)

  4、牛头数=原有草量÷吃的天数+草的生长速度

  四、下面举个例子

  例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

  一般方法:先假设1头牛1天所吃的牧草为1,那么就有:

  (1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

  (2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

  (3)1天新长的草为:(207-162)÷(9-6)=15

  (4)牧场上原有的草为:27×6-15×6=72

  (5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

  所以养21头牛,12天才能把牧场上的草吃尽

  公式解法:

  (1)草的生长速度=(207-162)÷(9-6)=15

  (2)牧场上原有草=(27-15)×6=72

  再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。

  方程解答:

  设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有

  27×6-6x =23×9-9x

  解出x=15份

  再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:

  27×6-6×15 =23×9-9×15=(21-15)x

  解出x=12(天)

  所以养21头牛。12天可以吃完所有的草。

小升初数学知识点11

  1整数加法:把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  加数+加数=和 一个加数=和-另一个加数

  2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的`加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。

  3整数乘法:求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

  在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

  一个因数 一个因数 =积 一个因数=积另一个因数

  4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。

  在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数除数=商 除数=被除数商 被除数=商除数

小升初数学知识点12

  小升初数学知识总结:小数

  自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  纯小数:个位是0的小数。

  带小数:各位大于0的小数。

  循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

  不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

  无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414

  无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654

  小升初数学知识总结:利润

  利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)

  利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

  小升初数学知识总结:百分数

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  要学会把小数化成分数和把分数化成小数的化发。

  小升初数学知识总结:倍数与约数

  最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

  最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

  互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

  通分:把异分母分数的分别化成和原来分数相等的`同分母的分数,叫做通分。(通分用最小公倍数)

  约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

  最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

  分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

小升初数学知识点13

  内容概述

  涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题。

  1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?

  【分析与解】 我们知道如果有5个连

  续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

  所以n小于5.

  第一种情况:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;

  如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;

  所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能。

  第二种情况:当n为3时,有123的个位数字为6,234的个位数字为4,345的个位数字为0,,不满足。

  第三种情况:当n为2时,有12,23,34,45的个位数字分别为2,6,4,0,显然不满足。

  至于n取1显然不满足了。

  所以满足条件的n是4.

  2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么

  (1)a+b的最小可能值是多少?

  (2)a+b的最大可能值是多少?

  【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,

  67,71,73,79,83,89,97.

  可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.

  所以满足条件的a+b最小可能值为30,最大可能值为168.

  3.如果某整数同时具备如下3条性质:

  ①这个数与1的差是质数;

  ②这个数除以2所得的商也是质数;

  ③这个数除以9所得的余数是5.

  那么我们称这个整数为幸运数。求出所有的两位幸运数。

  【分析与解】 条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件。

  其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.

  所以两位幸运数只有14.

  4.在555555的约数中,最大的三位数是多少?

  【分析与解】555555=51111001

  =357111337

  显然其最大的三位数约数为777.

  5.从一张长20xx毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断地重复,最后剪得正方形的.边长是多少毫米?

  【分析与解】 从长20xx毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是20xx除以847所得的商。而余数恰好是剩下的长方形的宽,于是有:2002847=2308,847308=2231,308231=177.23177=3.

  不难得知,最后剪去的正方形边长为77毫米。

  6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质。请写出所有可能的答案。

  【分析与解】 设这三个数为a、b、c,且a

  小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=27,其中质因数7只有14含有,无法找到两个不与14互质的数。

小升初数学知识点14

  1比和比例:

  比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

  所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.

  2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。

  比的性质用于化简比。

  比表示两个数相除;只有两个项:比的前项和后项。

  比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

  3.比例的性质:在比例里,两个外项的乘积等于两个内项的`乘积。比例的性质用于解比例。

  4.比和比例的区别

  (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4这是比例。

  (2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。

  5比和比例的意义

  比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

  6比和比例的联系:

  比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

  小学数学长方体和正方体知识点

  1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

  2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12

  4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

  5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2

  正方体的表面积=棱长×棱长×6??用字母表示:S=

  6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100

  7、体积:物体所占空间的大小叫做物体的体积。

  8、长方体的体积=长×宽×高???用字母表示:V=abh??长=体积÷(宽×高)宽=体积÷(长×高)

  高=体积÷(长×宽)

  正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a

  9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000

  10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

  11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

  把低级单位聚成高级单位,用低级单位数除以进率。

  12、容积:容器所能容纳物体的体积。

  13、容积单位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米

  14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

  小学数学0的含义是什么

  1、没有任何东西

  2、数轴的前点(原点)

  3、可以表示分界

  4、可以表示起点

  5、可以起到占位作用

小升初数学知识点15

  一、算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b=b + a

  3、乘法交换律:a × b=b × a

  4、乘法结合律:a × b × c=a ×(b × c)

  5、乘法分配律:a × b + a × c=a × b + c

  6、除法的性质:a ÷ b ÷ c=a ÷(b × c)

  7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  8、有余数的除法:被除数=商×除数+余数

  二、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

  代数:代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x=ab+c

  三、分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的'倒数是1,0没有倒数。

  分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

  分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  四、体积和表面积

  三角形的面积=底×高÷2。公式:S=a×h÷2

  正方形的面积=边长×边长公式:S=a2

  长方形的面积=长×宽公式:S=a×b

  平行四边形的面积=底×高公式:S=a×h

  梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V=abh

  长方体(或正方体)的体积=底面积×高公式:V=abh

  正方体的体积=棱长×棱长×棱长公式:V=a3

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  五、数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  、工效×时间=工作总量

  加数+加数=和

  一个加数=和+另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  拓展:小升初数学知识点总结一、数与数字的区别

  数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。

  数是由数字和数位组成。

  1.0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。00是最小的自然数,是一个偶数。是任何自然数(0除外)的倍数。0不能作除数。

  2.自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。简单说就是大于等于零的整数。

  3.整数:自然数都是整数,整数不都是自然数。

  4.小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。

  5.混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。

  5.纯小数:小数的整数部分为零的小数,叫做纯小数。

  7.有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

  8.无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

  9.循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。

  10.纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。

  11.混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

  12.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

  二、分数

  表示把“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。

《小升初数学知识点15篇【热】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【小升初数学知识点】相关文章:

小升初数学知识点05-20

【经典】小升初数学知识点05-21

小升初的数学知识点04-11

小升初数学必考知识点03-29

小升初数学重要知识点04-04

(经典)小升初数学知识点05-28

小升初数学知识点(优秀)05-21

小升初数学知识点总结03-05

[优选]小升初数学知识点05-27

小升初数学知识点【荐】05-28

小升初数学知识点15篇【热】

  上学期间,相信大家一定都接触过知识点吧!知识点就是学习的重点。掌握知识点是我们提高成绩的关键!下面是小编精心整理的小升初数学知识点,仅供参考,大家一起来看看吧。

小升初数学知识点15篇【热】

小升初数学知识点1

  一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

  二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

  1、被除数除数=被除数除数的倒数。例 3= = 3 =3 =5

  2、除法转化成乘法时,被除数一定不能变,变成,除数变成它的倒数。

  3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

  4、被除数与商的变化规律:

  ①除以大于1的数,商小于被除数:ab=c 当b1时,c我们精心为大家准备的小升初数学分数除法知识点,希望大家合理的利用!更多小升初复习资料及相关资讯,尽在数学网,请大家及时关注!

  ②除以小于1的数,商大于被除数:ab=c 当b1时,c0 b0)

  ③除以等于1的数,商等于被除数:ab=c 当b=1时,c=a

  三、分数除法混合运算

  1、混合运算用梯等式计算,等号写在第一个数字的左下角。

  2、运算顺序:

  ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

  ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

  注:(ab)c=acbc

  四、比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  注:连比如:3:4:5读作:3比4比5

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20= =1220= =0.6 12∶20读作:12比20

  注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变3、化简比:化简之后结果还是一个比,不是一个数。

  (1)、 用比的前项和后项同时除以它们的最大公约数。

  (2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的.形式。

  (3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

  4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  5、比和除法、分数的区别:

  除法 被除数 除号() 除数(不能为0) 商不变性质 除法是一种运算

  分数 分子 分数线() 分母(不能为0) 分数的基本性质 分数是一个数

  比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

  附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

小升初数学知识点2

  1、自然数a除以自然数b,商是10,那么a和b的最大公约数是( )。

  A、a B、b C、10

  2、一个三角形,经过它的一个顶点画一条线段把它分成两个三角形,其中一个三角形的内角和是( )。

  A、 180 B、90 C、不确定

  3、从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是( )。

  A、2:3 B、3:2 C、2:5

  4、小升初数学知识点复习:选择题练习题:用3根都是12分米长的铁丝围成长方形、正方形和圆形,则围成的( )面积最大。

  A、长方形 B、正方形 C、圆形

  5、在除法算式mn=ab中,(n0),下面式子正确的是( )。

  A、an B、na C、nb

  6、过平行四边形的一个顶点向对边可以作( )条高。

  A、1 B、2 C、无数

  7、用三根同样长的铅丝分别围成圆、正方形和长方形,( )的面积最小。

  A、圆 B、正方形 C、长方形

  8、甲数与乙数的比值为0.4,乙数与甲数的比值为( )

  A.0.4 B.2.5 C. 2/5

  9、加工一批零件,经检验有100个合格,不合格的.有25个,这批零件的合格率是( )

  A、75% B、80% C、100%

  10、小数点右边第三位的计数单位是( )

  A、百分位 B、千分位 C、0.01 D、0.001

  11、等底等高的圆柱体比圆锥体体积( )

  A、大 B、大2倍 C、小

  12、如果4X=3Y,那么X与Y( )

  A、成正比例 B、成反比例 C、不成比例

  13、0.70.3如果商是2那么余数是( )

  A、1 B、0.1 C、0.01 D、10

  14、做一批零件,如果每人的工效一定,那么工人的人数和用的时间( )

  A.成正比例 B.成反比例 C.不成比例

  15、两根同样长的绳子,一根剪去3/7,另一根剪去3/7米,第( )根剪去的长一些。

  A、第一根长 B、第二根长 C、一样长 D、无法判断

  16、一根绳子,剪成两段,第一段长3/7米,第二段占全长的3/7,第( )段长一些。

  A、第一段长 B、第二段长 C、一样长 D、无法判断

小升初数学知识点3

  1、十几乘十几:

  口诀:头乘头,尾加尾,尾乘尾。

  例:12×14=?

  解:1×1=1

  2+4=6

  2×4=8

  12×14=168

  注:个位相乘,不够两位数要用0占位。

  2、头相同,尾互补(尾相加等于10):

  口诀:一个头加1后,头乘头,尾乘尾。

  例:23×27=?

  解:2+1=3

  2×3=6

  3×7=21

  23×27=621

  注:个位相乘,不够两位数要用0占位。

  3、第一个乘数互补,另一个乘数数字相同:

  口诀:一个头加1后,头乘头,尾乘尾。

  例:37×44=?

  解:3+1=4

  4×4=16

  7×4=28

  37×44=1628

  注:个位相乘,不够两位数要用0占位。

  4、几十一乘几十一:

  口诀:头乘头,头加头,尾乘尾。

  例:21×41=?

  解:2×4=8

  2+4=6

  1×1=1

  21×41=861

  5、11乘任意数:

  口诀:首尾不动下落,中间之和下拉。

  例:11×23125=?

  解:2+3=5

  3+1=4

  1+2=3

  2+5=7

  2和5分别在首尾

  11×23125=254375

  注:和满十要进一。

  6、十几乘任意数:

  口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,

  再向下落。

  例:13×326=?

  解:13个位是3

  3×3+2=11

  3×2+6=12

  3×6=18

  13×326=4238

  注:和满十要进一。

小升初数学知识点4

  1、 半圆的周长和圆的周长的一半有区别。

  2、 0.52÷0.17商是3,余数不是1而是0.01

  3、 在求总人数、总只数、总棵数这类应用题时,结果不可能是分数和小数。

  4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

  5、 无盖的水桶,水池,金鱼缸,水槽等,求表面积时一定要减少一个底面积。

  6、 求大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。

  7、 求××率或百分之几的列式中,最后必须“×100﹪”。

  8、 大数的读法:读几个0的问题

  【相关例题】10,0070,0008读几个0?

  【正确答案】2个

  【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

  9、近似值问题

  【相关例题】一个数的近似数是1万,这个数最大是_________

  【错误答案】9999

  【正确答案】14999

  【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

  10、 比例尺问题:注意面积的比例尺

  【相关例题】在比例尺为1:20xx的沙盘上,实际面积为800000平方米的生态公园为_____平方米

  【错误答案】400

  【正确答案】0.2

  【例题评析】很多孩子直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

  20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的`4000000面积单位。

  11、正反比例问题:未搞清正比例、反比例的含义

  【相关例题】判断对错:圆的面积与半径成正比例

  【错误答案】√

  【正确答案】×

  【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

  12、比的问题:注意前后项的顺序

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________

  【错误答案】16:9

  【正确答案】9:16

  【例题评析】谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!

  13、比的问题:比与比值的区别

  【相关例题】一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______

  【错误答案】9:16

  【正确答案】9/16

  【例题评析】比值是一个结果,是一个数。

  14、单位问题:不要漏写单位

  【相关例题】边长为4厘米的正方形,面积为________

  【错误答案】16

  【正确答案】16平方厘米

  【例题评析】面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

  15、 单位问题:注意单位的一致

  【相关例题】某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.

  【错误答案】75

  【正确答案】25.05

  【例题评析】很多孩子没有看到kg与g的单位不一致,直接给出了75的错误答案。(马上点标题下“小升初”关注可获得更多有态度的智慧文章,每天更新哟!)

  16、闰年,平年问题:不清楚闰年的概念

  【相关例题】1900年是闰年还是平年?

  【错误答案】闰年

  【正确答案】平年

  【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

  17、解方程问题:括号前面是减号,去括号要变号!移项要变号!

  【相关例题】6—2(2X—3)=4

  【错误答案】其他

  【正确答案】x=2

  【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

  18、计算问题:牢记运算顺序

  【相关例题】20÷7×1/7

  【错误答案】20

  【正确答案】20/49

  【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运

  算、运算顺序以及提取公因数等计算基本功的考察。

  19、平均速度问题

  【相关例题】小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____

  【错误答案】(1+3)÷2=2(米/秒)

  【正确答案】设上山全程为a米,则平均速度为:(a×2)÷(a÷1+a÷3)=1.5(米/秒)

  【例题评析】平均速度的定义为:总路程÷总时间

小升初数学知识点5

  一、分数乘法

  (一)分数乘法的意义:

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  例如: 5表示求5个的和是多少?

  2、分数乘分数是求一个数的几分之几是多少。

  例如: 表示求的是多少?

  (二)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (三)、规律:(乘法中比较大小时)

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (四)、分数混合运算的运算顺序和整数的运算顺序相同。

  (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a b = b a

  乘法结合律: ( a b )c = a ( b c )

  乘法分配律: ( a + b )c = a c + b c

  二、分数乘法的解决问题

  (已知单位1的量(用乘法),求单位1的几分之几是多少)

  1、画线段图:

  (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

  2、找单位1: 在分率句中分率的前面; 或 占、是、比的后面

  3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。

  4、写数量关系式技巧:

  (1)的 相当于 占、是、比相当于 =

  (2)分率前是的: 单位1的量分率=分率对应量

  (3)分率前是多或少的意思: 单位1的`量(1分率)=分率对应量

  三、倒数

  1、倒数的意义: 乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  (要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0,(分母不能为0)

  4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

小升初数学知识点6

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。

  作用:确定一个点的位置。经度和纬度就是这个原理。

  例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

  注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

  样题:同学们排队做操通常( )叫行,( )叫列。

  (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的'列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

  竖排叫列 横排叫行

  (从左往右看)(从下往上看)

  样题:小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用( , )来表示,用(5,2)表示的同学坐在第( )列第( )行。

  2、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  3、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  样题:如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A、锐角 B、钝角 C、直角 D、等腰

  4、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

  5、图形平移变化规律:

  (1)物体向左平移,行数不变,列数减去平移的格数。

  物体向右平移,行数不变,列数加上平移的格数。

  (2)物体向上平移,列数不变,行数加上平移的格数。

  物体向下平移,列数不变,行数减去平移的格数。

小升初数学知识点7

  专题一:计算

  我一直强调计算,扎实的算功是学好数学的必要条件。聪明在于勤奋,知识在于积累。积累一些常见数是必要的。如1/8,1/4,3/8,1/2,5/8,3/4,7/8的分数,小数,百分数,比的互化要脱口而出。100以内的质数要信手拈来。1-30的平方,1-10的立方的结果要能提笔就写。对于整除的判定仅仅积累2,3,5的是不够的。9的整除判定和3的方法是一样的。还有就是2和5的n次方整除的判定只要看末n位。如4和25的整除都是看末2位,末2位能被4或25整除则这个数可以被4或25整除。8和125就看末3位。7,11,13的整除判定就是割开三位。前面部分减去末三位就可以了如果能整除7或11或13,这个数就是7或11或13的倍数。这其实是判定1001的方法。此外还有一种方法是割个位法,望同学们至少掌握20以内整除的判定方法。

  接下来讲下数论的积累。1搞清楚什么是完全平方数,完全平方数个位只能是0,1,4,5,6,9.奇数的平方除以8余1,偶数的平方是4的倍数。要掌握如何求一个数的约数个数,所有约数的.和,小于这个数且和这个数互质数的个数如何求。如何估计一个数是否为质数。

  计算分为一般计算和技巧计算。到底用哪个呢?首先基本的运算法则必须很熟悉。不要被简便运算假象迷惑。这里重点说下技巧计算。首先要熟练乘法和除法的分配律,其次要熟练a-b-c=a-(b+c)a-(b-c)=a-b+c

  还有连除就是除以所有除数的积等。再者对于结合交换律都应该很熟悉。分配律有直接提公因数,和移动小数点或扩大缩小倍数来凑出公因数。甚至有时候要强行创造公因数。再单独算尾巴。

  分数的裂项:裂和与裂差 等差数列求和,平方差,配对,换元,拆项约分,等比定理的转化等都要很熟悉。还有就是放缩与估计都要熟练。在计算中到底运用小数还是分数要看情况。如果既有分数又有小数的题,如果不能化成有限小数的分数出现的话整个计算应该用分数。当小数位数不超过2位且分数可以化为3位以内的小数时候可以用小数。计算时候学会凑整。看到25找4,看到125找8,看到2找5这些要形成条件反射。如7992乘以25

  很多孩子用竖式算很久,而实际上只要7992除以4再乘以100=(8000-8)除以4再乘以100=199800运用下除法分配律。这些简便的方法不要要求简便的时候才用,平时就要多用才熟能生巧。

  最后讲下公比是1/2的等比数列。很多孩子做1/2+1/4+...+1/64能很快1-1/64=63/64,但如果是1/4+1/8+1/16+..+1/256就不会了。实际上一样的裂项,为1/2-1/4+1/4-1/8+...+1/128-1/256=1/2-1/256=127/256.所以要学活总结裂项的几种形式。最后一般化。

  专题二:解方程

  解方程一般是运用等式性质,由于小学生没学过移项。所以稍复杂的方程容易错符号。如37-2x=39-3x

  解这样方程建议先把两边加3x 得到37+x=39 x=2 有的直接做容易搞成5x=2,所以做完后要检验。解含有分母的方程建议首先把分子的多项式加括号。然后左右两边每个加数或减数都乘以最小公倍数。注意凡是整体加上括号,最后用分配律和加减的简便运算方法去掉括号。这样不会错符号和漏乘调理也清楚。还有注意训练整体意识如解60(100-x)=72(97-x)就应该两边首先约去12计算更好。对于机构复杂出现重复部分的方程还要注意换元。平时还可以多解一些稍微复杂的百分数方程。

  专题三:分数,比,百分数应用题

  解决这类题关键在于搞清楚标准。明白1倍是什么,比的一份是什么。如60比---多1/5,60比----少1/5,60是---的1/5,---是60的1/5,---比60多1/5,----比60少1/5.这个准备题能全对说明标准吃透了否则还要在找标准量上加强训练。注意分数带单位表示具体数量,不带单位表示的实际上是倍数。只是同学们习惯看整数和小数倍不习惯看分数倍数。百分数就只能表示倍数,不能表示数量是不可以带单位的。如果用比解决问题就务必吃透1份是多少。其实分数应用题都可以转化为A是B的多少倍?已知1倍求多倍乘法,已知多倍求1倍除法。比如A比B多1/3,这时候标准是B A比1倍多1/3倍就是A是B的4/3倍。马上有A:B=4:3,对于应用题中分数和比的转化要清晰。很多题我们用分数抽象但用比很好理解。因为孩子熟悉整数,不喜欢分数这时事实。对于百分数应用题我们可以化为比转化为孩子喜欢的东西。其实很多有不变数量的题就是找到不变量,统一不变量对应份数,求出1份是多少,按比例分配这4步曲一般分数,百分数比的应用题就搞定了。对于浓度问题和商品利润问题我讲了十字交叉法。对于有些孩子可能难理解,考试在大题中也不适宜用。其实浓度问题列方程就从溶质入手就可以了。

小升初数学知识点8

  综合行程知识点:

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水 速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  经典例题:

  1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  解:

  根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

  根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

  可以得出马与羊的速度比是21x:20x=21:20

  根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

  2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

  答案720千米。

  由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

  3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。

  解:

  600÷12=50,表示哥哥、弟弟的速度差

  600÷4=150,表示哥哥、弟弟的速度和

  (50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

  (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

  600÷100=6分钟,表示跑的快者用的时间

  600/50=12分钟,表示跑得慢者用的时间

  4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  答案为53秒

  算式是(140+125)÷(22-17)=53秒

  可以这样理解:“快车从追上慢车的`车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

  5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

  答案为100米

  300÷(5-4.4)=500秒,表示追及时间

  5×500=2500米,表示甲追到乙时所行的路程

  2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

小升初数学知识点9

  何谓“数、行、形、算”,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%。那么如何复习这四方面的内容呢?

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的`技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论在数论学习中学生往往容易犯如下几个错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  整除问题:

  (1)数的整除的特征和性质 (分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  这四个问题我们需要掌握到什么样的程度?

  近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初数学知识点10

  牛吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。

  下面是牛吃草问题的解题思路和解题方法、技巧供大家学习。

  一、解决此类问题,孩子必须弄个清楚几个不变量:

  1、草的增长速度不变 2、草场原有草的量不变 。草的总量由两部分组成,分别为:牧场原有草和新长出来的草。新长出来草的数量随着天数在变而变。

  因此孩子要弄清楚三个量的关系:

  第一:草的均匀变化速度(是均匀生长还是均匀减少)

  第二:求出原有草量

  第三:题意让我们求什么(时间、牛头数)。注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机

  二、解题基本思路

  1、先求出草的均匀变化速度,再求原有草量。

  2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的.差)”求出天数。

  3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

  4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数

  三、解题基本公式

  解决牛吃草问题常用到的四个基本公式分别为:

  1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)

  2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数

  3、吃的天数=原有草量÷(牛头数-草的生长速度)

  4、牛头数=原有草量÷吃的天数+草的生长速度

  四、下面举个例子

  例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

  一般方法:先假设1头牛1天所吃的牧草为1,那么就有:

  (1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

  (2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

  (3)1天新长的草为:(207-162)÷(9-6)=15

  (4)牧场上原有的草为:27×6-15×6=72

  (5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

  所以养21头牛,12天才能把牧场上的草吃尽

  公式解法:

  (1)草的生长速度=(207-162)÷(9-6)=15

  (2)牧场上原有草=(27-15)×6=72

  再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。

  方程解答:

  设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有

  27×6-6x =23×9-9x

  解出x=15份

  再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:

  27×6-6×15 =23×9-9×15=(21-15)x

  解出x=12(天)

  所以养21头牛。12天可以吃完所有的草。

小升初数学知识点11

  1整数加法:把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  加数+加数=和 一个加数=和-另一个加数

  2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的`加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。

  3整数乘法:求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

  在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

  一个因数 一个因数 =积 一个因数=积另一个因数

  4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。

  在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数除数=商 除数=被除数商 被除数=商除数

小升初数学知识点12

  小升初数学知识总结:小数

  自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  纯小数:个位是0的小数。

  带小数:各位大于0的小数。

  循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

  不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

  无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414

  无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654

  小升初数学知识总结:利润

  利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)

  利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

  小升初数学知识总结:百分数

  百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  要学会把小数化成分数和把分数化成小数的化发。

  小升初数学知识总结:倍数与约数

  最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

  最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

  互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

  通分:把异分母分数的分别化成和原来分数相等的`同分母的分数,叫做通分。(通分用最小公倍数)

  约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

  最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

  分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

小升初数学知识点13

  内容概述

  涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题。

  1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?

  【分析与解】 我们知道如果有5个连

  续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

  所以n小于5.

  第一种情况:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;

  如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;

  所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能。

  第二种情况:当n为3时,有123的个位数字为6,234的个位数字为4,345的个位数字为0,,不满足。

  第三种情况:当n为2时,有12,23,34,45的个位数字分别为2,6,4,0,显然不满足。

  至于n取1显然不满足了。

  所以满足条件的n是4.

  2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么

  (1)a+b的最小可能值是多少?

  (2)a+b的最大可能值是多少?

  【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,

  67,71,73,79,83,89,97.

  可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.

  所以满足条件的a+b最小可能值为30,最大可能值为168.

  3.如果某整数同时具备如下3条性质:

  ①这个数与1的差是质数;

  ②这个数除以2所得的商也是质数;

  ③这个数除以9所得的余数是5.

  那么我们称这个整数为幸运数。求出所有的两位幸运数。

  【分析与解】 条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件。

  其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.

  所以两位幸运数只有14.

  4.在555555的约数中,最大的三位数是多少?

  【分析与解】555555=51111001

  =357111337

  显然其最大的三位数约数为777.

  5.从一张长20xx毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断地重复,最后剪得正方形的.边长是多少毫米?

  【分析与解】 从长20xx毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是20xx除以847所得的商。而余数恰好是剩下的长方形的宽,于是有:2002847=2308,847308=2231,308231=177.23177=3.

  不难得知,最后剪去的正方形边长为77毫米。

  6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质。请写出所有可能的答案。

  【分析与解】 设这三个数为a、b、c,且a

  小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=27,其中质因数7只有14含有,无法找到两个不与14互质的数。

小升初数学知识点14

  1比和比例:

  比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

  所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.

  2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。

  比的性质用于化简比。

  比表示两个数相除;只有两个项:比的前项和后项。

  比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

  3.比例的性质:在比例里,两个外项的乘积等于两个内项的`乘积。比例的性质用于解比例。

  4.比和比例的区别

  (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4这是比例。

  (2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。

  5比和比例的意义

  比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

  6比和比例的联系:

  比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

  小学数学长方体和正方体知识点

  1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

  2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、长方体的棱长总和=(长+宽+高)×4???正方体的棱长总和=棱长×12

  4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

  5、长方体的表面积=(长×宽+长×高+宽×高)×2?? S=(ab+ah+bh)×2

  正方体的表面积=棱长×棱长×6??用字母表示:S=

  6、表面积单位:平方厘米、平方分米、平方米?相邻单位的进率为100

  7、体积:物体所占空间的大小叫做物体的体积。

  8、长方体的体积=长×宽×高???用字母表示:V=abh??长=体积÷(宽×高)宽=体积÷(长×高)

  高=体积÷(长×宽)

  正方体的体积=棱长×棱长×棱长??用字母表示:V= a×a×a

  9、体积单位:立方厘米、立方分米和立方米?相邻单位的进率为1000

  10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

  11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

  把低级单位聚成高级单位,用低级单位数除以进率。

  12、容积:容器所能容纳物体的体积。

  13、容积单位:升和毫升(L和ml) 1L=1000ml? 1L=1000立方厘米?? 1ml=1立方厘米

  14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

  小学数学0的含义是什么

  1、没有任何东西

  2、数轴的前点(原点)

  3、可以表示分界

  4、可以表示起点

  5、可以起到占位作用

小升初数学知识点15

  一、算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b=b + a

  3、乘法交换律:a × b=b × a

  4、乘法结合律:a × b × c=a ×(b × c)

  5、乘法分配律:a × b + a × c=a × b + c

  6、除法的性质:a ÷ b ÷ c=a ÷(b × c)

  7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  8、有余数的除法:被除数=商×除数+余数

  二、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

  代数:代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x=ab+c

  三、分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的'倒数是1,0没有倒数。

  分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

  分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  四、体积和表面积

  三角形的面积=底×高÷2。公式:S=a×h÷2

  正方形的面积=边长×边长公式:S=a2

  长方形的面积=长×宽公式:S=a×b

  平行四边形的面积=底×高公式:S=a×h

  梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V=abh

  长方体(或正方体)的体积=底面积×高公式:V=abh

  正方体的体积=棱长×棱长×棱长公式:V=a3

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  五、数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  、工效×时间=工作总量

  加数+加数=和

  一个加数=和+另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  拓展:小升初数学知识点总结一、数与数字的区别

  数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。

  数是由数字和数位组成。

  1.0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。00是最小的自然数,是一个偶数。是任何自然数(0除外)的倍数。0不能作除数。

  2.自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。简单说就是大于等于零的整数。

  3.整数:自然数都是整数,整数不都是自然数。

  4.小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。

  5.混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。

  5.纯小数:小数的整数部分为零的小数,叫做纯小数。

  7.有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

  8.无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

  9.循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。

  10.纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。

  11.混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

  12.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

  二、分数

  表示把“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。